All-Optical Ultrafast Valley Switching in Two-Dimensional Materials

Jun 5, 2023
16 pages
Published in:
  • Phys.Rev.Applied 19 (2023) 034056
e-Print:

Citations per year

20232024202501
Abstract: (arXiv)
Electrons in two-dimensional materials possess an additional quantum attribute, the valley pseudospin, labelled as K\mathbf{K} and K\mathbf{K}^{\prime}-- analogous to the spin up and spin down. The majority of research to achieve valley-selective excitations in valleytronics depends on resonant circularly-polarised light with a given helicity. Not only acquiring valley-selective electron excitation but also switching the excitation from one valley to another is quintessential for bringing valleytronics-based technologies in reality. Present work introduces a coherent control protocol to initiate valley-selective excitation, de-excitation, and switch the excitation from one valley to another on the fly within tens of femtoseconds -- a timescale faster than any valley decoherence time. Our protocol is equally applicable to {\it both} gapped and gapless two-dimensional materials. Monolayer graphene and molybdenum disulfide are used to test the universality. Moreover, the protocol is robust as it is insensitive to significant parameters of the protocol, such as dephasing times, wavelengths, and time delays of the laser pulses. Present work goes beyond the existing paradigm of valleytronics, and opens a new realm of valley switch at PetaHertz rate.
Note:
  • 16 pages, 4 figures
  • [1]

    Two-dimensional atomic crystals

    • K.S. Novoselov
      ,
    • D. Jiang
      ,
    • F. Schedin
      ,
    • T.J. Booth
      ,
    • V.V. Khotkevich
    et al.
      • Proc.Nat.Acad.Sci. 102 (2005) 10451-10453
  • [2]

    2d transition metal dichalcogenides

    • Oleg V. Yazyev
      • Materials 2 (2017) 1-15
  • [3]

    Atomically thin mos 2: a new direct-gap semiconductor

      • Phys.Rev.Lett. 105 (2010) 136805
  • [4]

    Photonics and optoelectronics of 2d semiconductor transition metal dichalcogenides

      • Nature Photon. 10 (2016) 216-226
  • [5]

    Spin and pseudospins in layered transition metal dichalcogenides

      • Nature Phys. 10 (2014) 343-350
  • [6]

    Roadmap on finding chiral valleys: screening 2d materials for valleytronics

  • [7]

    Light-valley interactions in 2d semiconductors

      • Nature Photon. 12 (2018) 451-460
  • [8]

    Optical manipulation of valley pseudospin

      • Nature Phys. 13 (2017) 26-29
  • [9]

    Valleytronics: opportunities, challenges, and paths forward

    • S.A. Vitale
      ,
    • D. Nezich
      ,
    • J.O. Varghese
      ,
    • P. Kim
      ,
    • N. Gedik
    et al.
  • [10]

    Valleytronics in 2d materials

    • J.R. Schaibley
      ,
    • H. Yu
      ,
    • G. Clark
      ,
    • P. Rivera
      ,
    • J.S. Ross
    et al.
      • Materials 1 (2016) 16055
  • [11]

    Control of valley polarization in monolayer mos2 by optical helicity

    • K.F. Mak
      ,
    • K. He
      ,
    • J. Shan
      ,
    • T.F. Heinz
      • Nature Nanotech. 7 (2012) 494-498
  • [12]

    Optical generation of excitonic valley coherence in monolayer wse2

    • A.M. Jones
      ,
    • H. Yu
      ,
    • N.J. Ghimire
      ,
    • S. Wu
      ,
    • G. Aivazian
    et al.
      • Nature Nanotech. 8 (2013) 634-638
  • [13]

    Graphene valley filter using a line defect

    • D. Gunlycke
      ,
    • C.T. White
      • Phys.Rev.Lett. 106 (2011) 136806
  • [14]

    Coupled spin and valley physics in monolayers of mos 2 and other group-vi dichalcogenides

    • D. Xiao
      ,
    • G.B. Liu
      ,
    • W. Feng
      ,
    • X. Xu
      ,
    • W. Yao
      • Phys.Rev.Lett. 108 (2012) 196802
  • [15]

    Valley polarization in mos 2 monolayers by optical pumping

      • Nature Nanotech. 7 (2012) 490-493
  • [16]

    Valley-selective circular dichroism of monolayer molybdenum disulphide

    • Liu
      • Nature Commun. 3 (2012) 1-5
  • [17]

    The valley hall effect in mos2 transistors

    • Kathryn L. McGill
      • Science 344 (2014) 1489-1492
  • [18]

    Topological resonance and single-optical-cycle valley polarization in gapped graphene

    • S. Azar Oliaei
      • Phys.Rev.B 100 (2019) 115431
  • [19]

    Femtosecond valley polarization and topological resonances in transition metal dichalcogenides

    • S. Azar Oliaei
      • Phys.Rev.B 98 (2018) 081406
  • [20]

    Dynamical symmetry and valleyselective circularly polarized high-harmonic generation in monolayer molybdenum disulfide

      • Phys.Rev.B 105 (2022) 024305
  • [21]

    Valley polarization control in wse 2 monolayer by a single-cycle laser pulse

      • Phys.Rev.B 105 (2022) 115403
  • [22]

    Detecting topological currents in graphene superlattices

    • AV Kretinin
      ,
    • F. Withers
      ,
    • A. Y Cao
      • Science 346 (2014) 448-451
  • [23]

    Emergence of superlattice dirac points in graphene on hexagonal boron nitride

    • M. Yankowitz
      ,
    • J. Xue
      ,
    • D. Cormode
      ,
    • J.D. Sanchez-Yamagishi
      ,
    • K. Watanabe
    et al.
      • Nature Phys. 8 (2012) 382-386
  • [24]

    Spin-valley filtering in strained graphene structures with artificially induced carrier mass and spin-orbit coupling

    • M.M. Gruj
      • Phys.Rev.Lett. 113 (2014) 046601
  • [25]

    Graphene nanobubbles as valley filters and beam splitters

    • M. Settnes
      ,
    • S.R. Power
      ,
    • M. Brandbyge
      ,
    • A.P. Jauho
      • Phys.Rev.Lett. 117 (2016) 276801