Voltage Controlled Nanoscale Magnetic Devices for Non-Volatile Memory and Scalable Quantum Computing

May, 2023
6 pages
  • Published: May, 2023

Citations per year

0 Citations
Abstract: (IEEE)
Giant magnetoresistance (GMR) and Spin Transfer Torque (STT) are the basis of non-volatile (stores information when powered off) memory known as STTRAM. However, even state-of-the-art extremely scaled magnetic memory devices takes 1000 times more energy to switch compared to today's CMOS devices. This motivates research on electrical field control of magnetization. Electrical field control, for example voltage control of magnetic anisotropy (VCMA) manipulation, of fixed skyrmions can lead to small footprint, energy efficient nanomagnetic memory. We discuss experimental demonstration of VCMA induced nonvolatile creation and annihilation of skyrmions in an antiferromagnet/ferromagnet/oxide heterostructure film followed by simulations to show the feasibility of skyrmion mediated ferromagnetic reversal of perpendicular-Magnetic Tunnel Junctions (MTJs) scaled to less than 20 nm lateral dimensions that can switch in 20\sim \mathbf{20}picoseconds. This intermediate skyrmion state provides a pathway for robust magnetization reversal with VCMA without the need for current or a magnetic field. We will also discuss the possibility of tuning the frequency of the skyrmion and nanomagnet oscillations to the Larmor frequency of the spins confined to a nanoscale volume to implement single-qubit quantum gates with fidelities approaching those of fault-tolerant quantum computing. Heterogenous integration and packaging will be key to further development of the above energy efficient computing paradigms.
  • Fault tolerance
  • Quantum computing
  • Nonvolatile memory
  • Fault tolerant systems
  • Logic gates
  • Packaging
  • Nanoscale devices
  • Nanomagnetic devices
  • MRAM
  • Single-qubit quantum gate
  • [1]
    Cramming more components onto integrated circuits. Electronics magazine, pp. 4,.Show in Context
    • G.E. Moore
  • [2]

    Opportunities for neuromorphic computing algorithms and applications

    • C.D. Schuman
      ,
    • S.R. Kulkarni
      ,
    • M. Parsa
      ,
    • J.P. Mitchell
      ,
    • P. Date
    et al.
  • [3]

    Skyrmion based energy-efficient straintronic physical reservoir computing

    • M.M. Rajib
      ,
    • W.A. Misba
      ,
    • M.F.F. Chowdhury
      ,
    • M.S. Alam
      ,
    • J. Atulasimha
  • [4]

    Focused surface acoustic wave induced nano-oscillator based reservoir computing

    • M.F.F. Chowdhury
      ,
    • W.A. Misba
      ,
    • M.M. Rajib
      ,
    • A.J. Edwards
      ,
    • D. Bhattacharya
    et al.
  • [5]

    Analogue signal and image processing with large memristor crossbars

    • C. Li
      ,
    • M. Hu
      ,
    • Y. Li
      ,
    • H. Jiang
      ,
    • N. Ge
  • [6]

    Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust Hf02 based RRAM

    • H.Y. Lee
      ,
    • P.S. Chen
      ,
    • T.Y. Wu
      ,
    • Y.S. Chen
      ,
    • C.C. Wang
  • [7]

    Phase change memory technology

    • G.W. Burr
      ,
    • M.J. Breitwisch
      ,
    • M. Franceschini
      ,
    • D. Garetto
      ,
    • K. Gopalakrishnan
  • [8]

    Theory of the perpendicular magnetoresistance in magnetic multilayers

    • T. Valet
      ,
    • A. Fert
  • [9]

    Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions

    • J.S. Moodera
      ,
    • L.R. Kinder
      ,
    • T.M. Wong
      ,
    • R. Meservey
  • [10]

    Giant magnetic tunneling effect in Fe/Al2O3/Fe junction

    • T. Miyazaki
      ,
    • N. Tezuka
  • [11]

    Giant magnetoresistance in magnetic nanostructures

    • S.S.P. Parkin
  • [12]

    Capacitor-on-metal/via-stacked-plug (CMVP) memory cell for 0.25/spl mu/m CMOS embedded FeRAM

    • K. Amanuma
      ,
    • T. Tatsumi
      ,
    • Y. Maejima
      ,
    • S. Takahashi
      ,
    • H. Hada
  • [13]

    A review of emerging non-volatile memory (NVM) technologies and applications

    • A. Chen
  • [14]

    Tunneling between ferromagnetic films

    • M. Julliere
  • [15]

    Spin-dependent tunneling conductance of Fe| MgO| Fe sandwiches

    • W.H. Butler
      ,
    • X.G. Zhang
      ,
    • T.C. Schulthess
      ,
    • J.M. MacLaren
  • [16]

    Current-driven excitation of magnetic multilayers

    • J.C. Slonczewski
  • [17]

    Emission of spin waves by a magnetic multilayer traversed by a current

    • L. Berger
  • [18]

    Acoustic-wave-induced ferromagnetic-resonance-assisted spin-torque switching of perpendicular magnetic tunnel junctions with anisotropy variation

    • W.A. Misba
      ,
    • M.M. Rajib
      ,
    • D. Bhattacharya
      ,
    • J. Atulasimha
  • [19]

    Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses

    • Y. Shiota
      ,
    • T. Nozaki
      ,
    • F. Bonell
      ,
    • S. Murakami
      ,
    • T. Shinjo
    et al.
  • [20]

    Electric-field-assisted switching in magnetic tunnel junctions

    • W.G. Wang
      ,
    • M. Li
      ,
    • S. Hageman
      ,
    • C.L. Chien
  • [21]

    Large voltage-induced magnetic anisotropy change in a few atomic layers of iron

    • T. Maruyama
      ,
    • Y. Shiota
      ,
    • T. Nozaki
      ,
    • K. Ohta
      ,
    • N. Toda
  • [22]

    Modeling and exploration of the voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-speed MRAM applications

    • W. Kang
      ,
    • Y. Ran
      ,
    • Y. Zhang
      ,
    • W. Lv
      ,
    • W. Zhao
      • IEEE Trans.Nanotechnol. 16 (2017) 387-395
  • [23]

    Voltage-controlled magnetic anisotropy in spintronic devices

    • P.K. Amiri
      ,
    • K.L. Wang
  • [24]

    Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching

    • N. Tiercelin
      ,
    • Y. Dusch
      ,
    • V. Preobrazhensky
      ,
    • P. Pernod
  • [25]

    Dependence of voltage and size on write error rates in spin-transfer torque magnetic random-access memory

    • J.J. Nowak
      ,
    • R.P. Robertazzi
      ,
    • J.Z. Sun
      ,
    • G. Hu
      ,
    • J.H. Park