QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices
Aug 15, 2023
Citations per year
Abstract: (Association for Computing Machinery)
The success of a quantum algorithm hinges on the ability to orchestrate a successful application induction. Detrimental overheads in mapping general quantum circuits to physically implementable routines can be the deciding factor between a successful and erroneous circuit induction. In QASMTrans, we focus on the problem of rapid circuit transpilation. Transpilation plays a crucial role in converting high-level, machine-agnostic circuits into machine-specific circuits constrained by physical topology and supported gate sets. The efficiency of transpilation continues to be a substantial bottleneck, especially when dealing with larger circuits requiring high degrees of inter-qubit interaction. QASMTrans is a high-performance C++ quantum transpiler framework that demonstrates 3-1111 × speedups compared to the commonly used Qiskit transpiler. We observe speedups on large dense circuits such as ‘uccsd_n24’ which require gates. QASMTrans successfully transpiles the aforementioned circuits in 7.9s, whilst Qiskit needs 502 seconds with optimization 1 and exceeds an hour of transpilation time with optimization 3. With QASMTrans providing transpiled circuits in a fraction of the time of prior transpilers, potential design space exploration, and heuristic-based transpiler design becomes substantially more tractable. QASMTrans is released at http://github.com/pnnl/qasmtrans.- Qiskit
- gate
- induction
- noisy intermediate-scale quantum
- quantum algorithm
- efficiency
- quantum circuit
- topology
References(57)
Figures(9)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [18]
- [19]
- [20]
- [21]
- [22]