Number-State Reconstruction with a Single Single-Photon Avalanche Detector

Aug 25, 2023
11 pages
e-Print:
DOI:

Citations per year

20222023202402
Abstract: (arXiv)
Single-photon avalanche detectors (SPADs) are crucial sensors of light for many fields and applications. However, they are not able to resolve photon number, so typically more complex and more expensive experimental setups or devices must be used to measure the number of photons in a pulse. Here, we present a methodology for performing photon number-state reconstruction with only one SPAD. The methodology, which is cost-effective and easy to implement, uses maximum-likelihood techniques with a detector model whose parameters are measurable. We achieve excellent agreement between known input pulses and their reconstructions for coherent states with up to \approx 10 photons and peak input photon rates up to several Mcounts/s. When detector imperfections are small, we maintain good agreement for coherent pulses with peak input photon rates of over 40 Mcounts/s, greater than one photon per detector dead time. For anti-bunched light, the reconstructed and independently measured pulse-averaged values of g(2)(0)g^{(2)}(0) are also consistent with one another. Our algorithm is applicable to light pulses whose pulse width and correlation time scales are both at least a few detector dead times. These results, achieved with single commercially available SPADs, provide an inexpensive number-state reconstruction method and expand the capabilities of single-photon detectors.
Note:
  • 11 pages, 5 figures plus supplementary 26 pages, 11 figures; v3 contains minor wording and content revisions
  • [1]

    High-fidelity trapped-ion state detection with an integrated avalanche photodiode

    • R. McConnell
      ,
    • D. Reens
      ,
    • M. Collins
      ,
    • J. Ciampi
      ,
    • D. Kharas
    et al.
  • [2]

    Number-resolved imaging of 88Sr atoms in a long working distance optical tweezer

    • N. Jackson
      ,
    • R. Hanley
      ,
    • M. Hill
      ,
    • F. Leroux
      ,
    • C. Adams
    et al.
      • SciPost Phys. 8 (2020) 038
  • [3]

    Atomic clock ensemble in space

    • L. Cacciapuoti
      ,
    • C. Salomon
  • [4]

    QuantEYE: a quantum optics instrument for extremely large telescopes

    • G. Naletto
      ,
    • C. Barbieri
      ,
    • D. Dravins
      ,
    • T. Occhipinti
      ,
    • F. Tamburini
    et al.
  • [5]

    Quantum Interference between Photons from an Atomic Ensemble and a Remote Atomic Ion

    • A.N. Craddock
      ,
    • J. Hannegan
      ,
    • D.P. Ornelas-Huerta
      ,
    • J.D. Siverns
      ,
    • A.J. Hachtel
    et al.
      • Phys.Rev.Lett. 123 (2019) 213601
  • [6]

    Efficiency of an enhanced linear optical Bell-state measurement scheme with realistic imperfections

    • S. Wein
      ,
    • K. Heshami
      ,
    • C.A. Fuchs
      ,
    • H. Krovi
      ,
    • Z. Dutton
    et al.
      • Phys.Rev.A 94 (2016) 032332
  • [7]

    SPAD-Based Quantum Random Number Generator With an Nth-Order Rank Algorithm on FPGA

    • A. Tontini
      ,
    • L. Gasparini
      ,
    • N. Massari
      ,
    • R. Passerone
    • [8]

      High-Speed Free-Space QKD in the Presence of SPAD Dead Time

      • S. Jiang
        ,
      • M. Safari
    • [9]

      SPAD electronics for high-speed quantum communications

      • J.C. Bienfang
        ,
      • A. Restelli
        ,
      • A. Migdall
    • [10]

      Single-photon detectors for practical quantum cryptography

      • A. Tosi
        ,
      • F. Zappa
        ,
      • S. Cova
    • [11]

      Quantum state correction using a measurement-based feedforward mechanism

      • R.J. Donaldson
        ,
      • L. Mazzarella
        ,
      • U. Zanforlin
        ,
      • R.J. Collins
        ,
      • J. Jeffers
      et al.
        • Phys.Rev.A 100 (2019) 023840
    • [12]
      Single-photon Detection for Data Communication and Quantum Systems, 2053-2563
      • M. Hofbauer
        ,
      • K. Schneider-Hornstein
        ,
      • H. Zimmermann
    • [13]

      SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR)

      • F. Villa
        ,
      • F. Severini
        ,
      • F. Madonini
        ,
      • F. Zappa
        • Sensors 21 (2021) 3839
    • [14]

      A Comparison of APDand SPAD-Based Receivers for Visible Light Communications

      • L. Zhang
        ,
      • D. Chitnis
        ,
      • H. Chun
        ,
      • S. Rajbhandari
        ,
      • G. Faulkner
      et al.
        • Technol. 36 (2018) 2435-2442
    • [15]

      Single-photon avalanche diode imagers in biophotonics: review and outlook

      • C. Bruschini
        ,
      • H. Homulle
        ,
      • I.M. Antolovic
        ,
      • S. Burri
        ,
      • E. Charbon
    • [16]

      Development of new photon-counting detectors for single-molecule fluorescence microscopy

      • X. Michalet
        ,
      • R.A. Colyer
        ,
      • G. Scalia
        ,
      • A. Ingargiola
        ,
      • R. Lin
      et al.
        • Science 368 (2013) 20120035
    • [18]

      100,000 Frames/s 64×32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging

      • D. Bronzi
        ,
      • F. Villa
        ,
      • S. Tisa
        ,
      • A. Tosi
        ,
      • F. Zappa
      et al.
        • IEEE J.Sel.Top.Quant.Electron. 20 (2014) 354-363
    • [19]

      Photon counting Lidar for deep space applications: concept and simulator

      • M. Vacek
        ,
      • V. Michálek
        ,
      • M. Peca
        ,
      • I. Procházka
        ,
      • J. Blažej
      • [19]
        Quantum Opt. Quantum Inf. Transf. Process. pp. 877309-877309-10
        • M. Vacek
          ,
        • V. Michálek
          ,
        • M. Peca
          ,
        • I. Procházka
          ,
        • J. Blažej
      • [20]

        Improved spatial resolution achieved by chromatic intensity interferometry

        • L.-C. Liu
          ,
        • L.-Y. Qu
          ,
        • C. Wu
          ,
        • J. Cotler
          ,
        • F. Ma
        et al.
          • Phys.Rev.Lett. 127 (2021) 103601
      • [21]

        Single-photon imaging over 200 km

        • Z.-P. Li
          ,
        • J.-T. Ye
          ,
        • X. Huang
          ,
        • P.-Y. Jiang
          ,
        • Y. Cao
        et al.
          • Optica 8 (2021) 344-349
      • [22]
        Single-Photon Generation and Detection: Physics and Applications
        • A. Migdall
          ,
        • S.V. Polyakov
          ,
        • J. Fan
          ,
        • J.C. Bienfang
      • [23]

        Avalanche photodiodes and quenching circuits for single-photon detection

        • S. Cova
          ,
        • M. Ghioni
          ,
        • A. Lacaita
          ,
        • C. Samori
          ,
        • F. Zappa
          • Appl.Opt. 35 (1996) 1956-1976
      • [24]

        Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor

        • Z.H. Levine
          ,
        • T. Gerrits
          ,
        • A.L. Migdall
          ,
        • D.V. Samarov
          ,
        • B. Calkins
        et al.
          • J.Opt.Soc.Am.B 29 (2012) 2066-2073