Quantum interference in atom-exchange reactions

Oct 11, 2023
14 pages
Published in:
  • Science 384 (2024) 6700, adl6570
  • Published: Jun 7, 2024
e-Print:

Citations per year

202320242025361
Abstract: (American Association for the Advancement of Science)
Chemical reactions, in which bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb →K2 + Rb2 reaction at 500 nanokelvins, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb (potassium-rubidium) in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wave function after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.
Note:
  • 14 pages, 7 figures
  • [1]
    The simplest double slit: Interference and entanglement in double photoionization of H2. Science318, 949-952
    • D. Akoury
      ,
    • K. Kreidi
      ,
    • T. Jahnke
      ,
    • T. Weber
      ,
    • A. Staudte
    et al.
  • [2]
    Quantum mechanical double slit for molecular scattering. Science374, 960-964
    • H. Zhou
      ,
    • W.E. Perreault
      ,
    • N. Mukherjee
      ,
    • R.N. Zare
  • [3]
    Quantum interference between H + D2 quasiclassical reaction mechanisms. Nat
    • P.G. Jambrina
      ,
    • D. Herráez-Aguilar
      ,
    • F.J. Aoiz
      ,
    • M. Sneha
      ,
    • J. Jankunas
    et al.
  • [4]
    Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways. Science368, 767-771
    • Y. Xie
      ,
    • H. Zhao
      ,
    • Y. Wang
      ,
    • Y. Huang
      ,
    • T. Wang
    et al.
  • [5]
    Quantum interference between spin-orbit split partial waves in the F + HD → HF + D reaction. Science371, 936-940
    • W. Chen
      ,
    • R. Wang
      ,
    • D. Yuan
      ,
    • H. Zhao
      ,
    • C. Luo
    et al.
  • [6]
    Coherent control of collisional events: Bimolecular reactive scattering
    • M. Shapiro
      ,
    • P. Brumer
  • [7]
    Constructive quantum interference in photochemical reactions. J. Chem
    • S.S. Kale
      ,
    • Y.P. Chen
      ,
    • S. Kais
  • [8]
    Observation of quantum interference and coherent control in a photochemical reaction
    • D.B. Blasing
      ,
    • J. Pérez-Ríos
      ,
    • Y. Yan
      ,
    • S. Dutta
      ,
    • C.-H. Li
    et al.
  • [9]
    Coherent laser control of the product distribution obtained in the photoexcitation of HI. Science270, 77-80
    • L. Zhu
      ,
    • V. Kleiman
      ,
    • X. Li
      ,
    • S.P. Lu
      ,
    • K. Trentelman
    et al.
  • [10]
    Phase control in the two-color photodissociation of HD+HD+
    • B. Sheehy
      ,
    • B. Walker
      ,
    • L.F. DiMauro
  • [11]
    Experimental observation of laser control: Electronic branching in the photodissociation of Na2
    • A. Shnitman
      ,
    • I. Sofer
      ,
    • I. Golub
      ,
    • A. Yogev
      ,
    • M. Shapiro
    et al.
  • [13]
    Quantum gas of deeply bound ground state molecules. Science321, 1062-1066
    • J.G. Danzl
      ,
    • E. Haller
      ,
    • M. Gustavsson
      ,
    • M.J. Mark
      ,
    • R. Hart
    et al.
  • [14]
    Ultracold triplet molecules in the rovibrational ground state
    • F. Lang
      ,
    • K. Winkler
      ,
    • C. Strauss
      ,
    • R. Grimm
      ,
    • J.H. Denschlag
  • [15]
    Λ-enhanced imaging of molecules in an optical trap
    • L.W. Cheuk
      ,
    • L. Anderegg
      ,
    • B.L. Augenbraun
      ,
    • Y. Bao
      ,
    • S. Burchesky
    et al.
  • [16]
    Laser cooling of molecules
    • M.R. Tarbutt
  • [17]
    High phase-space density of laser-cooled molecules in an optical lattice
    • Y. Wu
      ,
    • J.J. Burau
      ,
    • K. Mehling
      ,
    • J. Ye
      ,
    • S. Ding
  • [18]
    Polarization enhanced deep optical dipole trapping of Λ
    • T.K. Langin
      ,
    • V. Jorapur
      ,
    • Y. Zhu
      ,
    • Q. Wang
      ,
    • D. DeMille
  • [19]
    Direct observation of bimolecular reactions of ultracold KRb molecules. Science366, 1111-1115
    • M.-G. Hu
      ,
    • Y. Liu
      ,
    • D.D. Grimes
      ,
    • Y.-W. Lin
      ,
    • A.H. Gheorghe
    et al.
  • [20]
    Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science327, 853-857
    • S. Ospelkaus
      ,
    • K.-K. Ni
      ,
    • D. Wang
      ,
    • M.H.G. de Miranda
      ,
    • B. Neyenhuis
    et al.
  • [21]
    Photo-excitation of long-lived transient intermediates in ultracold reactions
    • Y. Liu
      ,
    • M.-G. Hu
      ,
    • M.A. Nichols
      ,
    • D.D. Grimes
      ,
    • T. Karman
    et al.
  • [22]
    Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature593, 379-384
    • Y. Liu
      ,
    • M.-G. Hu
      ,
    • M.A. Nichols
      ,
    • D. Yang
      ,
    • D. Xie
    et al.
  • [23]
    Nuclear spin conservation enables state-to-state control of ultracold molecular reactions. Nat
    • M.-G. Hu
      ,
    • Y. Liu
      ,
    • M.A. Nichols
      ,
    • L. Zhu
      ,
    • G. Quéméner
    et al.
  • [24]
    The Feynman Lectures on Physics, vol. III
    • R. Feynman
      ,
    • R. Leighton
      ,
    • M. Sands
  • [25]
    Model for nuclear spin product-state distributions of ultracold chemical reactions in magnetic fields
    • G. Quéméner
      ,
    • M.-G. Hu
      ,
    • Y. Liu
      ,
    • M.A. Nichols
      ,
    • L. Zhu
    et al.