Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
Aug 10, 2014
5 pages
Published in:
- Nature Nanotech. 9 (2014) 666-670
- Published: Aug 10, 2014
Citations per year
Abstract: (Springer)
The electron spin in a silicon-based quantum dot can be controlled electrically for as long as several tens of microseconds, which improves the prospects for quantum information processing based on this type of quantum dot. Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment1. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet2, and the spin state is read out in the single-shot mode3. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots4,5, whereas gate operation times are comparable to those reported in GaAs6,7,8. The spin echo decay time is ∼40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.- Quantum information
- Qubits
References(29)
Figures(0)