Observation of the Magnonic Dicke Superradiant Phase Transition
Jan 3, 2024e-Print:
- 2401.01873 [quant-ph]
View in:
Citations per year
Abstract: (arXiv)
Two-level atoms coupled with single-mode cavity photons are predicted to exhibit a quantum phase transition when the coupling strength exceeds a critical value, entering a phase in which atomic polarization and photonic field are finite even at zero temperature and without external driving. However, this phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-go theorem due to the existence of the diamagnetic term in the Hamiltonian. Here, we present spectroscopic evidence for a magnonic SRPT in ErFeO, where the role of the photonic mode (two-level atoms) in the photonic SRPT is played by an Fe magnon mode (Er spins). The absence of the diamagnetic term in the Fe-Er exchange coupling ensures that the no-go theorem does not apply. Terahertz and gigahertz magnetospectroscopy experiments revealed the signatures of the SRPT -- a kink and a softening, respectively, of two spin-magnon hybridized modes at the critical point.References(46)
Figures(7)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]