Quantum information memory based on reconfigurable topological insulators by piezotronic effect

Mar 13, 2019
7 pages
Published in:
  • Nano Energy 60 (2019) 36-42
  • Published: Mar 13, 2019
DOI:

Citations per year

20212022202301
Abstract: (Elsevier Ltd)
As the emerging fields, piezotronics and piezophototronics have recently attracted extensive attention by the coupling of the semiconductor, photon excitation and piezoelectric properties. Piezopotential can be induced inside a piezoelectric material by applying an external mechanical force, which further adjusts the carrier transport property. In this paper, we theoretically investigate the piezotronic effect on topological insulators based on GaAs/Ge/GaAs quantum well with two quantum point contacts (QPCs). Strain-induced piezopotential can drive a topological phase transition from normal insulator to topological insulator state. The transport characteristics of edge states and bulk states are studied by calculating the electronic density distribution under various strains. The conductance of the edge states exhibits an excellent switching behavior with the ON/OFF ratio over 1010. By integrating multiple topological insulator systems into a circuit, piezotronic signal converter can be achieved for the consecutive signal transformation from strain stimulus to logic output. Such signal converter possesses ultralow power consumption due to the distinctive non-dissipation edge-state transport of the topological insulator. Besides, at some special circumstances, bulk-state electrons can be trapped by the double QPCs, which can be used to realize quantum information memory devices. This work provides a novel method for developing high-performance piezotronic devices based on topological insulator. Strain-induced piezoelectric field effectively controls a GaAs/Ge/GaAs quantum well from a normal state to a topological insulator state. The quantum piezotronic device can be used for the low power consumption signal converter and quantum information memory device.Image 1 •Piezotronic effect on GaAs/Ge/GaAs quantum well topological insulators has been investigated.•Strain-induced piezopotential modulates the edge-state transport in topological insulators.•A piezotronic signal converter and a quantum information memory device are demonstrated.
  • Piezotronic effect
  • Topological insulator
  • Double quantum point contacts
  • Strain-gated transistors
  • Quantum information memory
  • [1]
    • Z.L. Wang
      • Adv.Mater. 24 (2012) 4632-4646
  • [2]
    • W. Wu
      ,
    • Z.L. Wang
      • Nature Rev.Mater. 1 (2016) 16031
  • [3]
    • Y. Zhang
      ,
    • Y. Liu
      ,
    • Z.L. Wang
      • Adv.Mater. 23 (2011) 3004-3013
  • [4]
    • Y. Zhang
      ,
    • Z.L. Wang
      • Adv.Mater. 24 (2012) 4712-4718
  • [5]
    • Y. Gao
      ,
    • Z.L. Wang
      • Nano Lett. 7 (2007) 2499-2505
  • [6]
    • Z.L. Wang
      ,
    • J. Song
      • Science 312 (2006) 242-246
  • [7]
    • X. Wang
      ,
    • J. Zhou
      ,
    • J. Song
      ,
    • J. Liu
      ,
    • N. Xu
    et al.
      • Nano Lett. 6 (2006) 2768-2772
  • [8]
    • L. Zhu
      ,
    • Y. Zhang
      ,
    • P. Lin
      ,
    • Y. Wang
      ,
    • L. Yang
    et al.
      • ACS Nano 12 (2018) 1811-1820
  • [9]
    • R. Tao
      ,
    • W. Wang
      ,
    • J. Luo
      ,
    • S.A. Hasan
      ,
    • H. Torun
    et al.
      • Surf.Coat.Technol. 357 (2019) 587-594
  • [10]
    135204
    • S. Büyükköse
      ,
    • A. Hernandez-Minguez
      ,
    • B. Vratzov
      ,
    • C. Somaschini
      ,
    • L. Geelhaar
    et al.
      • Nanotechnol. 25 (2014)
  • [11]
    • Q. Yang
      ,
    • X. Guo
      ,
    • W. Wang
      ,
    • Y. Zhang
      ,
    • S. Xu
    et al.
      • ACS Nano 4 (2010) 6285-6291
  • [12]
    • F. Boxberg
      ,
    • N. Søndergaard
      ,
    • H. Xu
      • Nano Lett. 10 (2010) 1108-1112
  • [13]
    • Y. Zhang
      ,
    • Y. Yang
      ,
    • Z.L. Wang
      • Energy Environ. Sci. 5 (2012) 6850-6856
  • [14]
    • Q. Yang
      ,
    • W. Wang
      ,
    • S. Xu
      ,
    • Z.L. Wang
      • Nano Lett. 11 (2011) 4012-4017
  • [15]
    • G. Hu
      ,
    • Y. Zhang
      ,
    • L. Li
      ,
    • Z.L. Wang
      • ACS Nano 12 (2017) 779-785
  • [16]
    • J. Shi
      ,
    • P. Zhao
      ,
    • X. Wang
      • Adv.Mater. 25 (2013) 916-921
  • [17]
    • Y. Zhang
      ,
    • L. Li
      • Nano energy 22 (2016) 533-538
  • [18]
    214302
    • L. Li
      ,
    • Y. Zhang
      • J.Appl.Phys. 121 (2017)
  • [19]
    • L. Li
      ,
    • Y. Zhang
      • Nano Res 10 (2017) 2527-2534
  • [20]
    • J.E. Moore
      • Nature 464 (2010) 194
  • [22]
    126803
    • C. Brüne
      ,
    • C. Liu
      ,
    • E. Novik
      ,
    • E. Hankiewicz
      ,
    • H. Buhmann
    et al.
      • Phys.Rev.Lett. 106 (2011)
  • [23]
    106803
    • L. Fu
      ,
    • C.L. Kane
      ,
    • E.J. Mele
      • Phys.Rev.Lett. 98 (2007)
  • [24]
    • B.A. Bernevig
      ,
    • T.L. Hughes
      ,
    • S.-C. Zhang
      • Science 314 (2006) 1757-1761
  • [25]
    226801
    • C.L. Kane
      ,
    • E.J. Mele
      • Phys.Rev.Lett. 95 (2005)