Gravitational Phenomenology in Higher Dimensional Theories and Strings
Feb, 198954 pages
Published in:
- Phys.Rev.D 40 (1989) 1886-1903
Report number:
- IUHET-157
Citations per year
Abstract: (APS)
We investigate gravitational phenomenology in compactified higher-dimensional theories, with particular emphasis on the consequences in string theory of tensor-induced spontaneous Lorentz-symmetry breaking. The role played by this mechanism in causing a gravitational version of the Higgs effect and in compactification is explored. The experimental viability of compactified theories with zero modes is considered by examining nonleading but observable gravitational effects. Additional constraints from the observed cosmological properties of the Universe are uncovered. Our investigations significantly constrain many theories involving extra dimensions in their perturbative regime. To resolve the phenomenological difficulties one must generate masses for the higher-dimensional components of the metric while leaving massless the physical spacetime components. Some possibilities for overcoming this metric-mass problem are suggested. An open issue is whether the metric-mass problem is resolved in string theory.- space-time
- gauge field theory: U(1)
- field theory: scalar
- dimension: >4
- compactification
- field equations: solution
- transformation: conformal
- inflation
- invariance: Lorentz
- stability
References(0)
Figures(0)
Loading ...