Restricted Boltzmann machines in quantum physics
Jun 24, 20196 pages
Published in:
- Nature Phys. 15 (2019) 9, 887-892
- Published: Jun 24, 2019
Citations per year
Abstract: (Springer)
A type of stochastic neural network called a restricted Boltzmann machine has been widely used in artificial intelligence applications for decades. They are now finding new life in the simulation of complex wavefunctions in quantum many-body physics.- Information theory and computation
- Quantum information
- Quantum simulation
- Theoretical physics
References(64)
Figures(0)
- •
- Phys.Rev.Lett. 69 (1992) 2863-2866
- •
- AIP Conf.Proc. 1297 (2010) 1, 135
- e-Print:•
- DOI:
- Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press,)
- F. Becca,
- S. Sorella
- ,
- ,
- ,
- ,
- •
- Nature 551 (2017) 579-584,
- Nature 551 (2017) 579-584
- e-Print:•
- DOI:
- ,
- ,
- ,
- ,
- •
- Nature 551 (2017) 601-604
- e-Print:•
- DOI:
- Integrating neural networks with a quantum simulator for state reconstruction. Preprint at
- G. Torlai
- •
- e-Print:
- •
- Science 355 (2017) 6325, 602-606
- •
- Nature Phys. 13 (2017) 431-434
- e-Print:•
- DOI:
- •
- Nature Phys. 14 (2018) 447-450
- •
- Phys.Rev.B 94 (2016) 16, 165134
- Quantum supremacy, here we come
- B.M. Terhal
- •
- Nature Phys. 14 (2018) 530-531
- •
- Proc.Nat.Acad.Sci. 79 (1982) 2554-2558
- Inverse statistical problems: from the inverse ising problem to data science
- H.C. Nguyen,
- R. Zecchina,
- J. Berg
- •
- Adv.Phys. 66 (2017) 197-261
- learning algorithm for Boltzmann machines. Cogn
- D.H. Ackley,
- G.E. Hinton,
- T.J.A Sejnowski
- •
- Science 9 (1985) 147-169
- in Parallel Distributed Processing: Explorations in the Microstructure of Cognition Vol. 1. Rumelhart, D. E. & McClelland, J. L. (eds.)
- P. Smolensky
- Training products of experts by minimizing contrastive divergence
- G.E. Hinton
- •
- Neural Comput. 14 (2002) 1771-1800
- •
- Science 313 (2006) 5786, 1127647
- Restricted Boltzmann machines for collaborative filtering. In Proc. 24th International Conference on Machine Learning Ghahramani, Z. (eds.)
- R. Salakhutdinov,
- A. Mnih,
- G. Hinton
- Representational power of restricted Boltzmann machines and deep belief networks
- N.L. Roux,
- Y. Bengio
- •
- Neural Comput. 20 (2008) 1631-1649
- •
- Annals Phys. 349 (2014) 117-158
- e-Print:•
- •
- Phys.Rev.Lett. 93 (2004) 040502,
- Phys.Rev.Lett. 93 (2004) 4, 040502
- e-Print:•
- ,
- ,
- •
- Rev.Mod.Phys. 82 (2010) 277-306
- e-Print:•
- •
- Phys.Rev.Lett. 75 (1995) 3537-3540
- e-Print:•
- Unifying neural-network quantum states and correlator product states via tensor networks
- S.R. Clark
- •
- J.Phys.A 51 (2018) 135301