Logarithmic and power-law entropies from convexity

Jun 25, 2024
12 pages
e-Print:

Citations per year

0 Citations
Abstract: (arXiv)
In an attempt to understand the origin and robustness of the Boltzmann/Gibbs/Shannon entropic functional, we adopt a geometric approach and discuss the implications of the Johnson-Lindenstrauss lemma and of Dvoretzky's theorem on convex bodies for the choice of this functional form. We contrast these results with a more recent result on flowers of balls, which may be interpreted as suggesting the use of power-law entropies for some systems.
Note:
  • 12 pages. No figures. Standard LaTeX2e
  • [1]
    Asymptotic Geometric Analysis, Part I
    • S. Artstein-Avidan
      ,
    • A. Giannopoulos
      ,
    • V.D. Milman
  • [2]
    Asymptotic Geometric Analysis, Part II, Math. Surveys Monog. 261, Amer. Math. Soc., Providence, RI, USA
    • S. Artstein-Avidan
      ,
    • A. Giannopoulos
      ,
    • V.D. Milman
  • [3]
    Extensions of Lipschitz mappings into a Hilbert space, pp. 189-206 in Conference in Modern Analysis and Probability, New Haven, Conn., Comtemp. Math. 26, Amer. Math. Soc., Providence, RI, USA (1984)
    • W.B. Johnson
      ,
    • J. Lindenstrauss
  • [4]
    Chaos and Coarse Graining in Statistical Mechanics, Cambridge Univ. Press, Cambridge, UK
    • P. Castiglione
      ,
    • M. Falcioni
      ,
    • A. Lesne
      ,
    • A. Vulpiani
  • [6]
    Introduction to Symplectic Topology, Third Edition, Oxford Univ. Press, Oxford, UK
    • D. McDuff
      ,
    • D. Salamon
  • [7]
    When symplectic topology meets Banach space geometry, pp. 959-982, in Proceedings of the International Congress of Mathematicians, Seoul, Volume II, S.Y. Young, Y.R. Kim, D.-W. Lee, I. Yie (eds.)
    • Y. Ostrover
  • [8]
    NonLinear Fokker-Planck Equations: Fundamentals and Applications, Springer Series in Synergetics
    • T.D. Frank
  • [9]
    Metric structures in L1: dimension, snowflakes and average distortion, Eur. J
    • J.R. Lee
      ,
    • M. Mendel
      ,
    • A. Naor
  • [10]
    The Johnson-Lindenstrauss Lemma Almost Characterizes Hilbert Space, But Not Quite
    • W.B. Johnson
      ,
    • A. Naor
      • Discrete Comput.Geom. 43 (2010) 542-553
  • [11]
    Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, UK
    • A. Katok
      ,
    • B. Hasselblatt
  • [12]
    Geometric Tomography, Second Edition Cambridge Univ. Press, Cambridge, UK
    • R.J. Gardner
  • [13]
    Sign and geometric meaning of curvature, Rend. Semin. Mat. Phys. Milano 61, 9-123
    • M. Gromov
  • [14]
    Reciprocals and Flowers in Convexity, pp. 199-227 in Geometric Aspects of Functional Analysis
    • E. Milman
      ,
    • V. Milman
      ,
    • L. Rotem
    • [14]
      Israel Seminar
      • B. Klartag
        ,
      • E. Milman
        • Geom.Funct.Anal. 2017 (2020) 2019
    • [15]
      Novel view on classical convexity theory
      • V. Milman
        ,
      • L. Rotem
        • J.Math.Phys.Anal.Geom. 16 (2020) 291-311
    • [16]
      Quantum polar duality and the symplectic camel: a new geometric approach to quantization
      • M. De Gosson
        • Found.Phys. 51 (2021) 1-39
    • [18]
      Quantum Blobs
      • M.A. de Gosson
        • Found.Phys. 43 (2013) 440-457
    • [19]
      Symplectic capacities and the geometry of uncertainty: the irruption of symplectic topology in classical and quantum mechanics
      • M. De Gosson
        ,
      • F. Luef
        • Phys.Rept. 484 (2009) 131-179
    • [20]
      Möbius Transforms, Cycles and q-triplets in Statistical Mechanics
      • J.P. Gazeau
        ,
      • C. Tsallis
        • Entropy 21 (2019) 1155
    • [21]
      • S. Artstein-Avidan
        ,
      • S. Sadovsky
        ,
      • K. Wyczesany
        ,
      • A. Zoo of Dualities
        • J.Geom.Anal. 33 (2023) 238