Hyperfine-to-rotational energy transfer in ultracold atom-molecule collisions

Jul 11, 2024
e-Print:

Citations per year

20222023202401
Abstract: (arXiv)
Energy transfer between different mechanical degrees of freedom in atom-molecule collisions has been widely studied and largely understood. However, systems involving spins remain less explored, especially with a state-to-state precision. Here, we directly observed the energy transfer from atomic hyperfine to molecular rotation in the 87^{87}Rb (Fa,MFa=2,2|F_a,M_{F_a}\rangle = |2,2\rangle) + 40^{40}K87^{87}Rb (in the rovibronic ground state N=0N=0) \longrightarrow Rb (1,1 |1,1\rangle) + KRb (N=0,1,2N=0,1,2) exothermic collision. We probed the quantum states of the collision products using resonance-enhanced multi-photon ionization followed by time-of-flight mass spectrometry. We also carried out state-of-the-art quantum scattering calculations, which rigorously take into account the coupling between the spin and rotational degrees of freedom at short range, and assume that the KRb monomer can be treated as a rigid rotor moving on a single potential energy surface. The calculated product rotational state distribution deviates from the observations even after extensive tuning of the atom-molecule potential energy surface, suggesting that vibrational degrees of freedom and conical intersections play an important part in ultracold Rb + KRb collisions. Additionally, our ab initio calculations indicate that spin-rotation coupling is dramatically enhanced near a conical intersection, which is energetically accessible at short range. The observations confirm that spin is coupled to mechanical rotation at short range and establish a benchmark for future theoretical studies.
  • [1]
    H. Knöckel, and E. Tiemann, Coupling of the X1 Σ+ and a3 Σ+ states of KRb
    • A. Pashov
      ,
    • O. Docenko
      ,
    • M. Tamanis
      ,
    • R. Ferber
      • Phys.Rev.A 76 (2007) 022511
  • [2]
    Internally contracted multiconfiguration-reference configuration interaction calculations for excited states
    • P.J. Knowles
      ,
    • H.-J. Werner
      • Theor.Chim.Acta 84 (1992) 95
  • [3]
    An efficient internally contracted multiconfiguration-reference configuration interaction method
    • H.-J. Werner
      ,
    • P.J. Knowles
      • J.Chem.Phys. 89 (1988) 5803
  • [4]
    and M. Schütz, Molpro: a general-purpose quantum chemistry program package
    • H.-J. Werner
      ,
    • P.J. Knowles
      ,
    • G. Knizia
      ,
    • F.R. Manby
      • Science 2 (2012) 242
  • [5]
    A. Köhn, T. Korona, D. A. Kreplin, Q. Ma, I. Miller, Thomas F., A. Mitrushchenkov, K. A. Peterson, I. Polyak, G. Rauhut, and M. Sibaev
    • H.-J. Werner
      ,
    • P.J. Knowles
      ,
    • F.R. Manby
      ,
    • J.A. Black
      ,
    • K. Doll
    et al.
      • J.Chem.Phys. 152 (2020) 144107
  • [6]
    Molpro,.2, a package of ab initio programs , see
    • H.-J. Werner
      ,
    • P.J. Knowles
  • [7]
    Relativistic compact effective potentials and efficient, sharedexponent basis sets for the third-, fourth-, and fifth-row atoms
    • W.J. Stevens
      ,
    • M. Krauss
      ,
    • H. Basch
      ,
    • P.G. Jasien
      • Can.J.Chem. 70 (1992) 612
  • [8]
    Ab-initio study of the ground and low-lying excited states including the spin-orbit effect of RbBa molecule and laser cooling feasibility, Journal of Quantitative Spectroscopy & Radiative Transfer 252, 107069
    • H. Ladjimi
      ,
    • W. Zrafi
      ,
    • A.-R. Allouche
      ,
    • H. Berriche
  • [9]
    A fully variational spin-orbit coupled complete active space self-consistent field approach: Application to electron paramagnetic resonance g-tensors
    • D. Ganyushin
      ,
    • F. Neese
      • J.Chem.Phys. 138 (2013) 104113
  • [10]
    The ORCA quantum chemistry program package
    • F. Neese
      ,
    • F. Wennmohs
      ,
    • U. Becker
      ,
    • C. Riplinger
      • J.Chem.Phys. 152 (2020) 224108
  • [11]
    Software update: the orca program system, version 4.0
    • F. Neese
      • Science 8 (2018) e1327
  • [12]
    One-electron contributions to the g-tensor for second-order Douglas-Kroll-Hess theory
    • B. Sandhoefer
      ,
    • F. Neese
      • J.Chem.Phys. 137 (2012) 094102
  • [13]
    Segmented contracted error-consistent basis sets of quadruple-ζ valence quality for one- and two-component relativistic all-electron calculations
    • Y.J. Franzke
      ,
    • L. Spiske
      ,
    • P. Pollak
      ,
    • F. Weigend
      • Can.J.Chem. 16 (2020) 5658
  • [14]
    The relationship between electron spin rotation coupling constants and g-tensor components
    • R. Curl
      • Mol.Phys. 9 (1965) 585
  • [15]
    Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory
    • M. Saitow
      ,
    • F. Neese
      • J.Chem.Phys. 149 (2018) 034104
  • [16]
    P. S. Żuchowski, and J. M. Hutson, Hyperfine energy levels of alkali-metal dimers: Groundstate polar molecules in electric and magnetic fields
    • J. Aldegunde
      ,
    • B.A. Rivington
      • Phys.Rev.A 78 (2008) 033434
  • [17]
    Rotational spectroscopy of diatomic molecules (Cambridge university press,)
    • J.M. Brown
      ,
    • A. Carrington
  • [19]
    An improved log derivative method for inelastic scattering
    • D.E. Manolopoulos
      • J.Chem.Phys. 85 (1986) 6425
  • [20]
    Angular Momentum
    • R.N. Zare
  • [21]
    Universal rate constants for reactive collisions of ultracold molecules
    • Z. Idziaszek
      ,
    • P.S. Julienne
      • Phys.Rev.Lett. 104 (2010) 113202
  • [22]
    Quantum magnetism with polar alkali-metal dimers
    • A.V. Gorshkov
      ,
    • S.R. Manmana
      ,
    • G. Chen
      ,
    • E. Demler
      ,
    • M.D. Lukin
    et al.
      • Phys.Rev.A 84 (2011) 033619
  • [23]
    Dispersion interactions and reactive collisions of ultracold polar molecules
    • S. Kotochigova
      • New J.Phys. 12 (2010) 073041
  • [24]
    Ab initio calculation of the spectrum of feshbach resonances in NaLi + Na collisions
    • T. Karman
      ,
    • M. Gronowski
      ,
    • M. Tomza
      ,
    • J.J. Park
      ,
    • H. Son
    et al.
      • Phys.Rev.A 108 (2023) 023309
  • [25]
    G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye
    • S. Ospelkaus
      ,
    • K.-K. Ni
      ,
    • D. Wang
      ,
    • M. De Miranda
      ,
    • B. Neyenhuis
      • Science 327 (2010) 853