Recovery of hydrogen plasma at the sub-nanosecond timescale in a plasma-wakefield accelerator
Jul 16, 20248 pages
Published in:
- Commun.Phys. 7 (2024) 1, 241
- Published: Jul 16, 2024
Citations per year
Abstract: (Springer)
Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at high repetition rates, with a recent research showing feasibility at megahertz levels using an Argon source that recovered after about 60 ns. Here we report about a proof-of-principle experiment that demonstrates the recovery of a Hydrogen plasma at the sub-nanosecond timescale. The result is obtained with a pump-and-probe setup and has been characterized for a wide range of plasma densities. We observed that large plasma densities reestablish their initial state soon after the injection of the pump beam ( < 0.7 ns). Conversely, at lower densities we observe the formation of a local dense plasma channel affecting the probe beam dynamics even at long delay times ( > 13 ns). The results are supported with numerical simulations and represent a step forward for the next-generation of compact high-repetition rate accelerators.References(39)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]