Unique Imprint of Black Hole Spin on the Polarization of Near-Horizon Images
Sep 11, 2024Citations per year
Abstract: (arXiv)
Extracting information about the gravitational background from black hole images is both important and challenging. In this study, we use a physically motivated plasma model, typically applied to stationary, axisymmetric spacetimes, to demonstrate that in a rotating black hole spacetime, the polarizations of emitted light near the event horizon depend solely on the spacetime geometry, independent of the plasma flow geometry. We confirm that the frame-dragging effect of a rotating black hole governs the observed polarization structure in the near-horizon image. This finding indicates a unique imprint of the black hole spin on the polarization of the near-horizon image. We anticipate that refined observations of near-horizon emissions by the next-generation Event Horizon Telescope will enable us to determine the black hole spin in a straightforward manner.Note:
- 6 pages, 2 figures
References(50)
Figures(3)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]