Normal modes of the small-amplitude oscillon

Sep 23, 2024
31 pages
Published in:
  • JHEP 01 (2025) 039
  • Published: Jan 3, 2025
e-Print:

Citations per year

20222023202401
Abstract: (Springer)
Consider a classical (1+1)-dimensional oscillon of small amplitude ϵ. To all orders in ϵ, the oscillon solution is exactly periodic. We study small perturbations of such periodic configurations. These perturbations are themselves periodic up to a monodromy matrix. We explicitly find the eigenvectors of the monodromy matrix, which are the analogues of normal modes for oscillons. Dashen, Hasslacher and Neveu used such eigenvectors to quantize the sine-Gordon breather, and we suspect that they will be necessary to quantize the oscillon. Our results, regardless of the chosen model, suggest that low amplitude oscillons do not reflect small amplitude radiation.
Note:
  • 31 pages, 4 PDF figures
  • Solitons Monopoles and Instantons
  • Field Theories in Lower Dimensions