GRoovy: A General Relativistic Hydrodynamics Code for Dynamical Spacetimes with Curvilinear Coordinates, Tabulated Equations of State, and Neutrino Physics
Dec 4, 2024
Citations per year
0 Citations
Abstract: (arXiv)
Many astrophysical systems of interest to numerical relativity, such as rapidly rotating stars, black hole accretion disks, and core-collapse supernovae, exhibit near-symmetries. These systems generally consist of a strongly gravitating central object surrounded by an accretion disk, debris, and ejecta. Simulations can efficiently exploit the near-axisymmetry of these systems by reducing the number of points in the angular direction around the near-symmetry axis, enabling efficient simulations over seconds-long timescales with minimal computational expense. In this paper, we introduce GRoovy, a novel code capable of modeling astrophysical systems containing compact objects by solving the equations of general relativistic hydrodynamics (GRHD) in full general relativity using singular curvilinear (spherical-like and cylindrical-like) and Cartesian coordinates. We demonstrate the code's robustness through a battery of challenging GRHD tests, ranging from flat, static spacetimes to curved, dynamical spacetimes. These tests further showcase the code's capabilities in modeling systems with realistic, finite-temperature equations of state and neutrino cooling via a leakage scheme. GRoovy extensively leverages GRHayL, an open-source, modular, and infrastructure-agnostic general relativistic magnetohydrodynamics library built from the highly robust algorithms of IllinoisGRMHD. Long-term simulations of binary neutron star and black hole-neutron star post-merger remnants will benefit greatly from GRoovy to study phenomena such as remnant stability, gamma-ray bursts, and nucleosynthesis.Note:
- 17 pages, 10 figures
References(135)
Figures(13)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]