Comparison of Three Methods for Triggering Core-collapse Supernova Explosions in Spherical Symmetry

Jan 22, 2025
20 pages
e-Print:

Citations per year

0 Citations
Abstract: (arXiv)
Despite the three-dimensional nature of core-collapse supernovae (CCSNe), simulations in spherical symmetry (1D) play an important role to study large model sets for the progenitor-remnant connection, explosion properties, remnant masses, and CCSN nucleosynthesis. To trigger explosions in 1D, various numerical recipes have been applied, mostly with gross simplifications of the complex microphysics governing stellar core collapse, the formation of the compact remnant, and the mechanism of the explosion. Here we investigate the two most popular treatments, piston-driven and thermal-bomb explosions, in comparison to 1D explosions powered by a parametric neutrino engine in the P-HOTB code. For this comparison we calculate CCSNe for eight stars and evolution times up to 10,000 s, targeting the same progenitor-specific explosion energies as obtained by the neutrino-engine results. Otherwise we employ widely-used ("classic") modelling assumptions, and alternatively to the standard contraction-expansion trajectory for pistons, we also test suitably selected Lagrangian mass shells adopted from the neutrino-driven explosions as "special trajectories." Although the 56Ni production agrees within roughly a factor of two between the different explosion triggers, neither piston nor thermal bombs can reproduce the correlation of 56Ni yields and explosion energies found in neutrino-driven explosions. This shortcoming as well as the problem of massive fallback witnessed in classical piston models, which diminishes or extinguishes the ejected nickel, can be largely cured by the special trajectories. These and the choice of the explosion energies, however, make the modelling dependent on pre-existing neutrino-driven explosion results.
Note:
  • 20 pages, 13 figures, 7 tables; submitted to MNRAS
Loading ...