Broadband selective excitation of topological bound states in the continuum within two-dimensional supersymmetric photonic lattices

Feb 15, 2025
8 pages
Published in:
  • Phys.Rev.B 111 (2025) 7, 075427
  • Published: Feb 15, 2025
DOI:

Citations per year

0 Citations
Abstract: (APS)
Bound states in the continuum (BICs), which are localized waves within a continuous spectrum of radiating waves, have garnered considerable attention due to their counterintuitive physical properties. However, selectively exciting these bound states from the continuum remains challenging because of their degenerate eigenenergy. In this work, we propose a method to accurately excite high-order topological BICs (TBICs) using supersymmetric (SUSY) structures. By adiabatically transforming the SUSY partner to the original lattice, TBICs can be perfectly excited with simple single-site excitation. We experimentally verify our strategy in photonic waveguides at telecommunication wavelengths, demonstrating efficient excitation and the existence of TBICs across a broadband. Our work highlights the superior capability of SUSY in regulating optical BIC modes, suggesting possibilities for exploring BICs in higher-dimensional lattices.
  • [1]

    Interfering resonances and bound states in the continuum

    • H. Friedrich
      ,
    • D. Wintgen
  • [2]

    Physical realization of bound states in the continuum

    • H. Friedrich
      ,
    • D. Wintgen
  • [3]

    Bound states in the continuum in photonics

    • D.C. Marinica
      ,
    • A.G. Borisov
      ,
    • S.V. Shabanov
  • [4]

    Experimental observation of optical bound states in the continuum

    • Y. Plotnik
      ,
    • O. Peleg
      ,
    • F. Dreisow
      ,
    • M. Heinrich
      ,
    • S. Nolte
    et al.
  • [5]

    Observation of trapped light within the radiation continuum

    • C.W. Hsu
      ,
    • B. Zhen
      ,
    • J. Lee
      ,
    • S.-L. Chua
      ,
    • S.G. Johnson
    et al.
  • [6]

    Compact surface Fano states embedded in the continuum of waveguide arrays

    • S. Weimann
      ,
    • Y. Xu
      ,
    • R. Keil
      ,
    • A.E. Miroshnichenko
      ,
    • A. Tünnermann
    et al.
  • [7]

    Analytical perspective for bound states in the continuum in photonic crystal slabs

    • Y. Yang
      ,
    • C. Peng
      ,
    • Y. Liang
      ,
    • Z. Li
      ,
    • S. Noda
  • [8]

    Bound states in the continuum

    • C.W. Hsu
      ,
    • B. Zhen
      ,
    • A.D. Stone
      ,
    • J.D. Joannopoulos
      ,
    • M. Soljačić
  • [9]

    Perfect single-sided radiation and absorption without mirrors

    • H. Zhou
      ,
    • B. Zhen
      ,
    • C.W. Hsu
      ,
    • O.D. Miller
      ,
    • S.G. Johnson
    et al.
  • [10]

    Anisotropy-induced photonic bound states in the continuum

    • J. Gomis-Bresco
      ,
    • D. Artigas
      ,
    • L. Torner
  • [11]

    Lasing action from photonic bound states in continuum

    • A. Kodigala
      ,
    • T. Lepetit
      ,
    • Q. Gu
      ,
    • B. Bahari
      ,
    • Y. Fainman
    et al.
  • [12]

    Zero-index bound states in the continuum

    • M. Minkov
      ,
    • I.A.D. Williamson
      ,
    • M. Xiao
      ,
    • S. Fan
  • [13]

    Bound states in the continuum through environmental design

    • A. Cerjan
      ,
    • C.W. Hsu
      ,
    • M.C. Rechtsman
  • [14]

    Chiral quasi-bound states in the continuum

    • A. Overvig
      ,
    • N. Yu
      ,
    • A. Alù
  • [15]

    Optical bound states in the continuum in periodic structures: Mechanisms, effects, and applications

    • J. Wang
  • [16]

    Global phase diagram of bound states in the continuum

    • P. Hu
      ,
    • J. Wang
      ,
    • Q. Jiang
      ,
    • J. Wang
      ,
    • L. Shi
    et al.
  • [17]

    Topological nature of optical bound states in the continuum

    • B. Zhen
      ,
    • C.W. Hsu
      ,
    • L. Lu
      ,
    • A.D. Stone
      ,
    • M. Soljačić
  • [18]

    Nonradiating photonics with resonant dielectric nanostructures

    • K. Koshelev
      ,
    • G. Favraud
      ,
    • A. Bogdanov
      ,
    • Y. Kivshar
      ,
    • A. Fratalocchi
  • [19]

    Merging bound states in the continuum at off-high symmetry points

    • M. Kang
      ,
    • S. Zhang
      ,
    • M. Xiao
      ,
    • H. Xu
  • [20]

    Applications of bound states in the continuum in photonics

    • M. Kang
      ,
    • T. Liu
      ,
    • C.T. Chan
      ,
    • M. Xiao
  • [21]

    Strongly localized mode at the intersection of the phase slips in a photonic crystal without band gap

    • V.M. Apalkov
      ,
    • M.E. Raikh
  • [22]

    Bound states in continuum: Quantum dots in a quantum well

    • N. Prodanović
      ,
    • V. Milanović
      ,
    • Z. Ikonić
      ,
    • D. Indjin
      ,
    • P. Harrison
  • [23]

    Controlling directionality and dimensionality of radiation by perturbing separable bound states in the continuum

    • N. Rivera
      ,
    • C.W. Hsu
      ,
    • B. Zhen
      ,
    • H. Buljan
      ,
    • J.D. Joannopoulos
    et al.
  • [24]

    Ultralow-threshold laser using super-bound states in the continuum

    • M.-S. Hwang
      ,
    • H.-C. Lee
      ,
    • K.-H. Kim
      ,
    • K.-Y. Jeong
      ,
    • S.-H. Kwon
    et al.
  • [25]

    Ultra-coherent Fano laser based on a bound state in the continuum

    • Y. Yu
      ,
    • A. Sakanas
      ,
    • A.R. Zali
      ,
    • E. Semenova
      ,
    • K. Yvind
    et al.