Quantum Annealing-Based Sum Rate Maximization for Multi-UAV-Aided Wireless Networks

Feb 25, 2025
15 pages
e-Print:

Citations per year

0 Citations
Abstract: (arXiv)
In wireless communication networks, it is difficult to solve many NP-hard problems owing to computational complexity and high cost. Recently, quantum annealing (QA) based on quantum physics was introduced as a key enabler for solving optimization problems quickly. However, only some studies consider quantum-based approaches in wireless communications. Therefore, we investigate the performance of a QA solution to an optimization problem in wireless networks. Specifically, we aim to maximize the sum rate by jointly optimizing clustering, sub-channel assignment, and power allocation in a multi-unmanned aerial vehicle-aided wireless network. We formulate the sum rate maximization problem as a combinatorial optimization problem. Then, we divide it into two sub-problems: 1) a QA-based clustering and 2) sub-channel assignment and power allocation for a given clustering configuration. Subsequently, we obtain an optimized solution for the joint optimization problem by solving these two sub-problems. For the first sub-problem, we convert the problem into a simplified quadratic unconstrained binary optimization (QUBO) model. As for the second sub-problem, we introduce a novel QA algorithm with optimal scaling parameters to address it. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of the sum rate and running time.
Note:
  • 15 pages, 9 figures, and 2 tables. Accepted by IEEE IoT Journal
  • [1]

    Softwarization of UAV networks: A survey of applications and future trends

    • O. Sami Oubbati
      ,
    • M. Atiquzzaman
      ,
    • T. Ahamed Ahanger
      ,
    • A. Ibrahim
      • IEEE Access 8 (2020) 98
  • [2]

    Cognition in UAV-aided 5G and beyond communications: A survey

    • Z. Ullah
      ,
    • F. Al-Turjman
      ,
    • L. Mostarda
  • [3]

    Wireless communications with unmanned aerial vehicles: opportunities and challenges

    • Y. Zeng
      ,
    • R. Zhang
      ,
    • T.J. Lim
      • IEEE Commun.Mag. 54 (2016) 36-42
  • [4]

    A tutorial on UAVs for wireless networks: Applications, challenges, and open problems

    • M. Mozaffari
      ,
    • W. Saad
      ,
    • M. Bennis
      ,
    • Y.-H. Nam
      ,
    • M. Debbah
  • [5]

    DroneNetX: Network reconstruction through connectivity probing and relay deployment by multiple UAVs in ad hoc networks

    • S.-Y. Park
      ,
    • C.S. Shin
      ,
    • D. Jeong
      ,
    • H. Lee
  • [6]

    UAV-assisted emergency communications: An extended multi-armed bandit perspective

    • Y. Lin
      ,
    • T. Wang
      ,
    • S. Wang
      • IEEE Commun.Lett. 23 (2019) 938-941
  • [7]

    Joint trajectory and power optimization for UAV relay networks

    • S. Zhang
      ,
    • H. Zhang
      ,
    • Q. He
      ,
    • K. Bian
      ,
    • L. Song
      • IEEE Commun.Lett. 22 (2018) 161-164
  • [8]

    Deep reinforcement learning for energy-efficient federated learning in UAV-enabled wireless powered networks

    • Q.V. Do
      ,
    • Q.-V. Pham
      ,
    • W.-J. Hwang
      • IEEE Commun.Lett. 26 (2022) 99-103
  • [9]

    Throughput maximization for UAV-enabled mobile relaying systems

    • Y. Zeng
      ,
    • R. Zhang
      ,
    • T.J. Lim
      • IEEE Trans.Commun. 64 (2016) 4983-4996
  • [10]

    Cellular UAV-to-X communications: Design and optimization for multi-UAV networks

    • S. Zhang
      ,
    • H. Zhang
      ,
    • B. Di
      ,
    • L. Song
  • [11]

    Three-dimensional dronecell deployment for congestion mitigation in cellular networks

    • P. Yang
      ,
    • X. Cao
      ,
    • X. Xi
      ,
    • Z. Xiao
      ,
    • D. Wu
      • Technol. 67 (2018) 9867-9881
  • [12]

    Realtime optimal resource allocation for embedded UAV communication systems

    • M.-N. Nguyen
      ,
    • L.D. Nguyen
      ,
    • T.Q. Duong
      ,
    • H.D. Tuan
  • [13]

    Optimal transport theory for cell association in UAV-enabled cellular networks

    • M. Mozaffari
      ,
    • W. Saad
      ,
    • M. Bennis
      ,
    • M. Debbah
      • IEEE Commun.Lett. 21 (2017) 2053-2056
  • [14]

    Location optimization and user association for unmanned aerial vehicles assisted mobile networks

    • Y. Sun
      ,
    • T. Wang
      ,
    • S. Wang
  • [15]

    Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications

    • M. Mozaffari
      ,
    • W. Saad
      ,
    • M. Bennis
      ,
    • M. Debbah
  • [16]

    Joint optimization of relay deployment, channel allocation, and relay assignment for UAVs-aided D2D networks

    • X. Zhong
      ,
    • Y. Guo
      ,
    • N. Li
      ,
    • Y. Chen
  • [17]

    Integrated UAV trajectory control and resource allocation for UAV-based wireless networks with co-channel interference management

    • M.D. Nguyen
      ,
    • L.B. Le
      ,
    • A. Girard
  • [18]

    Joint resource allocation, placement and user association of multiple UAV-mounted base stations with in-band wireless backhaul

    • C. Qiu
      ,
    • Z. Wei
      ,
    • Z. Feng
      ,
    • P. Zhang
  • [19]

    Spectrum sharing for UAV communications: Spatial spectrum sensing and open issues

    • B. Shang
      ,
    • V. Marojevic
      ,
    • Y. Yi
      ,
    • A.S. Abdalla
      ,
    • L. Liu
  • [20]

    Enabling ultra-dense UAV-aided network with overlapped spectrum sharing: Potential and approaches

    • L. Wang
      ,
    • H. Yang
      ,
    • J. Long
      ,
    • K. Wu
      ,
    • J. Chen
  • [21]

    Energy tradeoff in ground-toUAV communication via trajectory design

    • D. Yang
      ,
    • Q. Wu
      ,
    • Y. Zeng
      ,
    • R. Zhang
      • Technol. 67 (2018) 6721-6726
  • [22]

    Resource allocation for energy harvesting-powered D2D communication underlaying UAV-assisted networks

    • H. Wang
      ,
    • J. Wang
      ,
    • G. Ding
      ,
    • L. Wang
      ,
    • T.A. Tsiftsis
    et al.
  • [23]

    Secure communications for UAV-enabled mobile edge computing systems

    • Y. Zhou
      ,
    • C. Pan
      ,
    • P.L. Yeoh
      ,
    • K. Wang
      ,
    • M. Elkashlan
    et al.
      • IEEE Trans.Commun. 68 (2020) 376-388
  • [24]
    [Online]. Available:
    • D-Wave System
  • [25]

    Simulating ising spins in external magnetic fields with a network of degenerate optical parametric oscillators

    • H. Takesue
      ,
    • K. Inaba
      ,
    • T. Inagaki
      ,
    • T. Ikuta
      ,
    • Y. Yamada
    et al.
      • Phys.Rev.Applied 13 (2020) 054-059