Matching Lagrangian and Hamiltonian Simulations in (2+1)-dimensional U(1) Gauge Theory
Mar 14, 2025
Citations per year
0 Citations
Abstract: (arXiv)
At finite lattice spacing, Lagrangian and Hamiltonian predictions differ due to discretization effects. In the Hamiltonian limit, i.e. at vanishing temporal lattice spacing at, the path integral approach in the Lagrangian formalism reproduces the results of the Hamiltonian theory. In this work, we numerically calculate the Hamiltonian limit of a U(1) gauge theory in (2+1) dimensions. This is achieved by Monte Carlo simulations in the Lagrangian formalism with lattices that are anisotropic in the time direction. For each ensemble, we determine the ratio between the temporal and spatial scale with the static quark potential and extrapolate to at→0. Our results are compared with the data from Hamiltonian simulations at small volumes, showing agreement within <2σ. These results can be used to match the two formalisms.Note:
- 11 figures, 9 tables
References(42)
Figures(10)
- [1]
- •
- Phys.Rev.D 10 (1974) 2445-2459,
- In *Rebbi, C. ( Ed.): Lattice Gauge Theories and Monte Carlo Simulations*, 45-59. ( Phys. Rev. D10 ( 1974) 2445-2459) and Cornell Univ. Ithaca - CLNS-74-262 (74,REC.MAR.) 47p,
- [2]
- •
- Phys.Rev.D 11 (1975) 395-408
- [3]
- •
- Phys.Rev.D 15 (1977) 1128,
- In *Rebbi, C. ( Ed.): Lattice Gauge Theories and Monte Carlo Simulations*, 132-140. ( Phys. Rev. D15 ( 1977) 1128-1136) and Brookhaven Nat. Lab. Upton - BNL-21959 (76,REC.DEC.) 29p
- [4]
- ,
- ,
- ,
- ,
- •
- PoS LATTICE2018 (2018) 022
- e-Print:•
- DOI:
- [5]
- ,
- •
- Rept.Prog.Phys. 83 (2020) 2, 024401
- e-Print:•
- [6]
- ,
- ,
- ,
- •
- Nature Commun. 12 (2021) 1, 3600
- e-Print:•
- [7]
- ,
- ,
- ,
- •
- Phys.Rev.X 10 (2020) 4, 041040
- e-Print:•
- [8]
- Giuseppe Magnifico(,)
- Bari U. and
- INFN, Bari and
- Padua U. and
- INFN, Padua
- ,
- ,
- Peter Majcen(,)
- Padua U. and
- INFN, Padua and
- U. Coll. London
- Daniel Jaschke()
- Padua U. and
- INFN, Padua and
- U. Coll. London and
- Ulm U.
- e-Print:
- [9]
- ,
- ,
- •
- Phys.Rev.D 106 (2022) 11, 114511
- e-Print:•
- [10]
- ,
- ,
- ,
- ,
- e-Print:
- [11]
- ,
- ,
- •
- Phys.Rev.Lett. 124 (2020) 8, 080501
- e-Print:•
- [12]
- ,
- ,
- •
- Phys.Rev.D 107 (2023) 5, 054507
- e-Print:•
- [13]
- [14]
- ,
- ,
- ,
- •
- Phys.Rev.D 68 (2003) 034504
- e-Print:•
- [15]
- ,
- ,
- ,
- ,
- •
- Phys.Rev.D 69 (2004) 074509
- e-Print:•
- [16]
- •
- Phys.Rev.D 70 (2004) 014504
- e-Print:•
- [17]
- •
- Phys.Rev.D 60 (1999) 034509
- e-Print:•
- [19]
- •
- Phys.Rev.D 56 (1997) 4043-4061
- e-Print:•
- [20]
- ,
- ,
- ,
- ,
- •
- Phys.Rev.D 63 (2001) 074501
- e-Print:•
- [21]
- •
- Nucl.Phys.B 411 (1994) 839-854,
- Nucl. Phys. B411 (1994) 839-854. and Hamburg DESY - DESY 93-062 (93/05,rec.Jun.) 18 p. C
- e-Print:•
- [22]
- ,
- ,
- ,
- ,
- •
- Quantum 5 (2021) 393
- e-Print:•
- [23]
- •
- Phys.Rev.D 102 (2020) 9, 094515
- e-Print:•
- [24]
- ,
- ,
- ,
- ,
- •
- PRX Quantum 2 (2021) 3, 030334,
- PRX Quantum 2 (2021) 030334
- e-Print:•
- [25]
- ,
- ,
- ,
- ,
- •
- Phys.Rev.D 104 (2021) 3, 034504
- e-Print:•