Level rank duality of WZW models in conformal field theory

Jul, 1990
35 pages
Published in:
  • Commun.Math.Phys. 144 (1992) 351-372
Report number:
  • NU-MATH-002

Citations per year

1992200020082016202402468
Abstract: (Springer)
We consider the decomposition of the conformal blocks under the conformal embeddings. The caseglundefined(lr)1slundefined(l)r×slundefined(r)l×a^\widehat{gl}\left( {lr} \right)_1\supset \widehat{sl}\left( l \right)_r\times \widehat{sl}\left( r \right)_l\times \hat a (â is an affine extension of the abelian subalgebra of the central elements ofgl(lr)) is studied in detal. The reciprocal decompositions ofglundefined(lr)1\widehat{gl}\left( {lr} \right)_1 -modules induce a pairing between the spaces of conformal blocks ofslundefined(l)r\widehat{sl}\left( l \right)_r andslundefined(r)l\widehat{sl}\left( r \right)_l Wess-Zumino-Witten models on the Riemann sphere. The completeness of the pairing is shown. Hence it defines aduality between two spaces.
  • field theory: conformal
  • dimension: 2
  • Wess-Zumino-Witten model
  • algebra: Lie
  • algebra: affine
  • Riemann surface
  • duality