Behavior of Friedmann-Robertson-Walker cosmological models in scalar - tensor gravity

May, 1994
24 pages
Published in:
  • Annals Phys. 241 (1995) 128-151
e-Print:
Report number:
  • NSF-ITP-94-45

Citations per year

199420022010201820250123456
Abstract: (arXiv)
We analyze solutions to Friedmann-Robertson-Walker cosmologies in Brans-Dicke theory, where a scalar field is coupled to gravity. Matter is modelled by a γ\gamma-law perfect fluid, including false-vacuum energy as a special case. Through a change of variables, we reduce the field equations from fourth order to second order, and they become equivalent to a two-dimensional dynamical system. We then analyze the entire solution space of this dynamical system, and find that many qualitative features of these cosmologies can be gleaned, including standard non-inflationary or extended inflationary expansion, but also including bifurcations of stable or unstable expansion or contraction, noninflationary vacuum-energy dominated models, and several varieties of ``coasting," ``bouncing," ``hesitating," and ``vacillating" universes. It is shown that inflationary dogma, which states that a universe with curvature and dominated by inflationary matter will always approach a corresponding flat-space solution at late times, does not hold in general for the scalar-tensor theory, but rather that the occurence of inflation depends upon the initial energy of the scalar field relative to the expansion rate. In the case of flat space (k=0k=0), the dynamical system formalism generates some previously known exact power-law solutions.
  • Friedman model
  • space-time: Robertson-Walker
  • Brans-Dicke model
  • field theory: scalar
  • field theory: tensor
  • gravitation
  • inflation
  • field equations
  • numerical calculations