Strong McKay correspondence, string theoretic Hodge numbers and mirror symmetry

1994
e-Print:

Citations per year

199420022010201820241023
  • string model
  • field theory: Calabi-Yau
  • geometry: algebra
  • group theory: geometrical
  • charge: topological
  • duality
  • bibliography
  • [1]
    J. Geom, On the equivariant Euler characteristic and Phys. 6 (1989), 671-677
    • M. Atiyah
      ,
    • G. Segal
    • [2]
      Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori
      • V.V. Batyrev
        • Duke Math.J. 69 (1993) 349
    • [3]

      Journées de géométrie algébrique d’Orsay

      • V.V. Batyrev
      • [4]
        Varieties, J., Dual Polyhedra and Mirror Symmetry for Calabi-Yau hypersurfaces in Toric Algeb. Geom. 3 (1994), 493-535
        • V.V. Batyrev
        • [5]
          Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds, Preprint (1994)
          • V.V. Batyrev
            ,
          • L.A. Borisov
          • [6]
            Singularités quotients non abéliennes de dimension 3 et variétés de Bogomolov, Prépublication de l’Institut Fourier, No 216 (1992)
            • J. Bertin
              ,
            • D. Markushevich
            • [7]
              Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein Toric Fano Varieties, Preprint (1993)
              • L.A. Borisov
              • [8]
                Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold, Preprint, CERN-TH.6831/93, UTTG-24-92
                • P. Candelas
                  ,
                • E. Derrick
                  ,
                • L. Parkes
                • [9]
                  The geometry of toric varieties
                  • V.I. Danilov
                    • Russ.Math.Surveys 33 (1978) 97
                • [10]
                  A.G. Khovanskiˆi: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers
                  • V.I. Danilov
                    • Math.USSR Izv. 29 (1987) 279
                • [11]
                  Théorie de Hodge II
                  • P. Deligne
                    • Inst.Hautes Etudes Sci.Publ.Math. 40 (1972) 5
                • [12]

                    • Nucl.Phys.B 274 (1986) 285-314,
                    • In *Schellekens, A.N. (ed.): Superstring construction* 181-210. (Nucl. Phys. B274 (1986) 285-314) and Preprint - Dixon, L.J. (86,rec.Mar.) 55 p. (see Book Index)
                • [13]
                  Introduction to toric varieties, Princeton University Press (1993)
                  • W. Fulton
                  • [14]
                    Construction géométrique de la correspondance de McKay, Ann. Scien. Ecole. Norm. Supér. 16 (1983), 409-449
                    • G. Gonzalez-Sprinberg
                      ,
                    • J.L. Verdier
                    • [15]
                      The Betti numbers of the Hilbert scheme of points on a smooth projective surface
                      • L. Göttsche
                        • Math.Ann. 286 (1990) 193
                    • [16]
                      Hilbert Schemes of Zero-Dimensional Subschemes of Smooth Varieties, Lect. Notes in Math., Vol. 1572 Verlag (1994)
                      • L. Göttsche
                      • [17]
                        Orbifold Hodge Numbers of Hilbert Schemes, Notes, (1994)
                        • L. Göttsche
                        • [18]
                          Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces
                          • L. Göttsche
                            ,
                          • W. Soergel
                            • Math.Ann. 296 (1993) 235
                        • [19]

                            • Nucl.Phys.B 338 (1990) 15-37,
                            • Harvard Univ. Cambridge - HUTP-89-A043 (89,rec.Mar.90) 31 p. Harvard Univ. Cambridge - HUTMP-89-B245 (89,rec.Mar.90) 31 p,
                            • Nucl. Phys. B338 (1990) 15-37 and Harvard Univ. Cambridge - HUTP-89-A043 (89,rec.Mar.90) 31 p
                        • [20]
                          S.-T. Yau, ed.), An introduction to mirror manifolds, Essays on Mirror Manifolds International Press Co., Hong Kong, 1992, pp. 1-30
                          • B. Greene
                            ,
                          • R. Plesser
                          • [21]
                            Mirror Symmetry in Higher Dimensions, CLNS-93/1253, IASSNS-HEP-94/2, YCT-P31-92
                            • B. Greene
                              ,
                            • D. Morrison
                              ,
                            • R. Plesser
                            • [22]
                              Der Satz von Riemann-Roch in faisceau-theoretisher Formulierung, Proc. Int. Congress of Math., Vol. III, (1954) pp. 457-473 (Collected Papers, Bd. I, (1987), pp. 128-144 Verlag.)
                              • F. Hirzebruch
                              • [23]
                                On the Euler number of an orbifold
                                • F. Hirzebruch
                                  ,
                                • T. Höfer
                                  • Math.Ann. 286 (1990) 255
                              • [24]
                                Ser. A, Crepant resolution of trihedral singularities, Proc. Japan Acad 70 (1994), 131-136
                                • Y. Ito