Riemannian geometry in thermodynamic fluctuation theory

Jul, 1995
54 pages
Published in:
  • Rev.Mod.Phys. 67 (1995) 605-659,
  • Rev.Mod.Phys. 68 (1996) 313-313 (erratum)

Citations per year

19952003201120192025010203040
Abstract: (APS)
Although thermodynamic fluctuation theory originated from statistical mechanics, it may be put on a completely thermodynamic basis, in no essential need of any microscopic foundation. This review views the theory from the macroscopic perspective, emphasizing, in particular, notions of covariance and consistency, expressed naturally using the language of Riemannian geometry. Coupled with these concepts is an extension of the basic structure of thermodynamic fluctuation theory beyond the classical one of a subsystem in contact with an infinite uniform reservoir. Used here is a hierarchy of concentric subsystems, each of which samples only the thermodynamic state of the subsystem immediately larger than it. The result is a covariant thermodynamic fluctuation theory which is plausible beyond the standard second-order entropy expansion. It includes the conservation laws and is mathematically consistent when applied to fluctuations inside subsystems. Tests on known models show improvements. Perhaps most significantly, the covariant theory offers a qualitatively new tool for the study of fluctuation phenomena: the Riemannian thermodynamic curvature. The thermodynamic curvature gives, for any given thermodynamic state, a lower bound for the length scale where the classical thermodynamic fluctuation theory based on a uniform environment could conceivably hold. Straightforward computation near the critical point reveals that the curvature equals the correlation volume, a physically appealing finding. The combination of the interpretation of curvature with a well-known proportionality between the free energy and the inverse of the correlation volume yields a purely thermodynamic theory of the critical point. The scaled equation of state follows from the values of the critical exponents. The thermodynamic Riemannian metric may be put into the broader context of information theory.