New gauge supergravity in seven-dimensions and eleven-dimensions

Oct, 1997
4 pages
Published in:
  • Phys.Rev.D 58 (1998) 101703
e-Print:

Citations per year

1997200420112018202402468101214
Abstract:
Locally supersymmetric systems in odd dimensions whose Lagrangians are Chern-Simons forms for supersymmetric extensions of anti-de Sitter gravity are discussed. The construction is illustrated for D=7 and 11. In seven dimensions the theory is an N=2 supergravity whose fields are the vielbein (eμae_{\mu}^{a}), the spin connection (ωμab\omega_{\mu}^{ab}), two gravitini (ψμi\psi_{\mu}^{i}) and an sp(2)sp(2) gauge connection (aμjia_{\mu j}^{i}). These fields form a connection for osp(28)osp(2|8). In eleven dimensions the theory is an N=1 supergravity containing, apart from eμae_{\mu}^{a} and ωμab\omega_{\mu}^{ab}, one gravitino ψμ\psi_{\mu}, and a totally antisymmetric fifth rank Lorentz tensor one-form, bμabcdeb_{\mu}^{abcde}. These fields form a connection for osp(321)osp(32|1). The actions are by construction invariant under local supersymmetry and the algebra closes off shell without requiring auxiliary fields. The N=2[D/2]N=2^{[D/2]}-theory can be shown to have nonnegative energy around an AdS background, which is a classical solution that saturates the Bogomolnyi bound obtained from the superalgebra.
  • supergravity
  • gauge field theory
  • Chern-Simons term
  • dimension: 7
  • dimension: 11
  • space-time: anti-de Sitter
  • algebra: OSp(N,M)
Loading ...