Numerical approach for high precision 3-D relativistic star models

Feb, 1998
14 pages
Published in:
  • Phys.Rev.D 58 (1998) 104020
e-Print:

Citations per year

199720042011201820250246810
Abstract: (arXiv)
A multi-domain spectral method for computing very high precision 3-D stellar models is presented. The boundary of each domain is chosen in order to coincide with a physical discontinuity (e.g. the star's surface). In addition, a regularization procedure is introduced to deal with the infinite derivatives on the boundary that may appear in the density field when stiff equations of state are used. Consequently all the physical fields are smooth functions on each domain and the spectral method is absolutely free of any Gibbs phenomenon, which yields to a very high precision. The power of this method is demonstrated by direct comparison with analytical solutions such as MacLaurin spheroids and Roche ellipsoids. The relative numerical error reveals to be of the order of 101010^{-10}. This approach has been developed for the study of relativistic inspiralling binaries. It may be applied to a wider class of astrophysical problems such as the study of relativistic rotating stars too.