Neutrino masses from large extra dimensions

Jul, 1998
8 pages
Published in:
  • Phys.Rev.D 65 (2001) 024032
Contribution to:
e-Print:
Report number:
  • SLAC-PUB-8014,
  • SU-ITP-98-64

Citations per year

19982005201220192025010203040506070
Abstract:
Recently it was proposed that the standard model (SM) degrees of freedom reside on a (3+1)(3+1)-dimensional wall or ``3-brane'' embedded in a higher-dimensional spacetime. Furthermore, in this picture it is possible for the fundamental Planck mass \mst to be as small as the weak scale \mst\simeq O(\tev) and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. We show that in this picture it is natural to expect neutrino masses to occur in the 10^{-1} - 10^{-4}\ev range, despite the lack of any fundamental scale higher than \mst. Such suppressed neutrino masses are not the result of a see-saw, but have intrinsically higher-dimensional explanations. We explore two possibilities. The first mechanism identifies any massless bulk fermions as right-handed neutrinos. These give naturally small Dirac masses for the same reason that gravity is weak at long distances in this framework. The second mechanism takes advantage of the large {\it infrared} desert: the space in the extra dimensions. Here, small Majorana neutrino masses are generated by breaking lepton number on distant branes.
  • talk: Oxford 1998/07/11
  • neutrino: mass
  • space-time: higher-dimensional
  • fermion: massless
  • neutrino: right-handed
  • mass: Dirac
  • mass: Majorana
  • lepton number: violation
  • crystal: lattice
  • membrane model