You need to enable JavaScript to run this app.
INSPIRE Logo
literature
Help
Submit
Login
Literature
Authors
Jobs
Seminars
Conferences
Data
BETA
More...
Moduli spaces of higher spin curves and integrable hierarchies
Tyler J. Jarvis
(
Brigham Young U.
)
,
Takashi Kimura
(
Boston U.
)
,
Arkady Vaintrob
(
Bonn, Max Planck Inst., Math.
and
New Mexico State U.
)
May, 1999
39 pages
e-Print:
math/9905034
[math]
View in:
ADS Abstract Service
pdf
cite
claim
reference search
11 citations
Citations per year
2000
2005
2010
2015
2020
1
0
2
moduli space
spin: high
Korteweg-de Vries equation: hierarchy
field theory: topological
cohomology
phase space
integrability
References
(28)
Figures
(0)
A Matrix integral solution to two-dimensional W(p) gravity
M. Adler
(
Brandeis U.
and
Louvain U.
)
,
P. van Moerbeke
(
Brandeis U.
and
Louvain U.
)
Commun.Math.Phys.
147
(1992)
25-56
•
DOI:
10.1007/BF02099527
edit
Topology
26
153
edit
J.Alg.Geom.
5
705
edit
Duke Math.J.
85
1
edit
e-Print:
math/9803072
edit
Contemp.Math.
67
93
edit
BiHamiltonian hierarchies in 2-D topological field theory at one loop approximation
Boris Dubrovin
(
SISSA, Trieste
)
,
Youjin Zhang
(
Kyoto U.
)
Commun.Math.Phys.
198
(1998)
311-361
•
e-Print:
hep-th/9712232
•
DOI:
10.1007/s002200050480
edit
Quantum cohomology and Virasoro algebra
Tohru Eguchi
(
Tokyo U.
)
,
Kentaro Hori
(
UC, Berkeley
)
,
Chuan-Sheng Xiong
(
Kyoto U., Yukawa Inst., Kyoto
)
Phys.Lett.B
402
(1997)
71-80
•
e-Print:
hep-th/9703086
•
DOI:
10.1016/S0370-2693(97)00401-2
edit
Hodge integrals and Gromov-Witten theory
C. Faber
,
R. Pandharipande
Inventiones mathematicae
139
(2000)
1
,
173-199
•
e-Print:
math/9810173
•
DOI:
10.1007/s002229900028
edit
e-Print:
alg-geom/9608011
edit
J.Am.Math.Soc.
10
973
edit
e-Print:
math/9801003
edit
Compos.Math.
110
65
edit
Virasoro constraints and the Chern classes of the Hodge bundle
E. Getzler
,
R. Pandharipande
Nucl.Phys.B
530
(1998)
701-714
•
e-Print:
math/9805114
•
DOI:
10.1016/S0550-3213(98)00517-3
edit
e-Print:
math/9809138
edit
Compos.Math.
110
291
edit
Intersection numbers and rank one cohomological field theories in genus one
Alexandre Kabanov
(
Bonn, Max Planck Inst., Math.
and
Michigan State U.
)
,
Takashi Kimura
(
Bonn, Max Planck Inst., Math.
and
Boston U.
)
Commun.Math.Phys.
194
(1998)
651-674
•
e-Print:
alg-geom/9706003
•
DOI:
10.1007/s002200050373
edit
Intersection Numbers on the Moduli Spaces of Stable Maps in Genus 0
Alexandre Kabanov
,
Takashi Kimura
Math.Phys.Stud.
23
(2001)
63-98
•
e-Print:
math/9801004
•
DOI:
10.1007/978-94-010-0704-7_5
edit
Trans.Am.Math.Soc.
330
545
edit
Intersection theory on the moduli space of curves and the matrix Airy function
M. Kontsevich
(
Bonn, Max Planck Inst., Math.
)
Commun.Math.Phys.
147
(1992)
1-23
•
DOI:
10.1007/BF02099526
edit
Gromov-Witten classes, quantum cohomology, and enumerative geometry
M. Kontsevich
(
Bonn, Max Planck Inst., Math.
)
,
Yu. Manin
(
Bonn, Max Planck Inst., Math.
)
Commun.Math.Phys.
164
(1994)
525-562
,
,
AMS/IP Stud.Adv.Math.
1
(1996)
607-653
•
e-Print:
hep-th/9402147
•
DOI:
10.1007/BF02101490
edit
Quantum cohomology of a product
Maxim Kontsevich
(
UC, Berkeley, Math. Dept.
)
,
Yu.I. Manin
(
Bonn, Max Planck Inst., Math.
)
Invent.Math.
124
(1996)
313-339
•
e-Print:
q-alg/9502009
•
DOI:
10.1007/s002220050055
edit
Asterisque
216
187
edit
Invertible cohomological field theories and Weil-Peterson volumes
Yuri I. Manin
(
Bonn, Max Planck Inst., Math.
)
,
Peter Zograf
(
Bonn, Max Planck Inst., Math.
and
Steklov Math. Inst., St. Petersburg
)
e-Print:
math/9902051
edit
Annales Sci.Ecole Norm.Sup.
4
181
edit
Feedback