The Dimensional reduction anomaly

Sep, 1999
28 pages
Published in:
  • Phys.Rev.D 61 (2000) 024021
e-Print:
Report number:
  • ALBERTA-THY-15-99

Citations per year

1999200620132020202501234567
Abstract:
In a wide class of D-dimensional spacetimes which are direct or semi-direct sums of a (D-n)-dimensional space and an n-dimensional homogeneous ``internal'' space, a field can be decomposed into modes. As a result of this mode decomposition, the main objects which characterize the free quantum field, such as Green functions and heat kernels, can effectively be reduced to objects in a (D-n)-dimensional spacetime with an external dilaton field. We study the problem of the dimensional reduction of the effective action for such spacetimes. While before renormalization the original D-dimensional effective action can be presented as a ``sum over modes'' of (D-n)-dimensional effective actions, this property is violated after renormalization. We calculate the corresponding anomalous terms explicitly, illustrating the effect with some simple examples.
  • space-time
  • any-dimensional
  • effective action
  • dimensional reduction
  • anomaly
  • correlation function
  • heat kernel
  • analytic properties