Pulsar magnetospheric emission mapping: images and implications of polar-cap weather

Sep, 1999
Published in:
  • Astrophys.J. 524 (1999) 1008
e-Print:

Citations per year

19992006201320202025024681012
Abstract: (arXiv)
The beautiful sequences of ``drifting'' subpulses observed in some radio pulsars have been regarded as among the most salient and potentially instructive characteristics of their emission, not least because they have appeared to represent a system of subbeams in motion within the emission zone of the star. Numerous studies of these ``drift'' sequences have been published, and a model of their generation and motion articulated long ago by Ruderman & Sutherland (1975): but efforts thus far have failed to establish an illuminating connection between the drift phemomenon and the actual sites of radio emission. Through a detailed analysis of a nearly coherent sequence of ``drifting'' pulses from pulsar B0943+10, we have in fact identified a system of subbeams circulating around the magnetic axis of the star. A mapping technique, involving a ``cartographic'' transform and its inverse, permits us to study the character of the polar-cap emission ``map'' and then to confirm that it, in turn, represents the observed pulse sequence. On this basis, we have been able to trace the physical origin of the ``drifting-subpulse'' emission to a stably rotating and remarkably organized configuration of emission columns, in turn traceable possibly to the magnetic polar-cap ``gap'' region envisioned by some theories.