Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach

May 3, 1999
4 pages
Published in:
  • Phys.Rev.Lett. 82 (1999) 3563-3567

Citations per year

199920052011201720230246810
Abstract: (APS)
We introduce a fractional Fokker-Planck equation describing the stochastic evolution of a particle under the combined influence of an external, nonlinear force and a thermal heat bath. For the force-free case, a subdiffusive behavior is recovered. The equation is shown to obey generalized Einstein relations, and its stationary solution is the Boltzmann distribution. The relaxation of single modes is shown to follow a Mittag-Leffler decay. We discuss the example of a particle in a harmonic potential.
  • 05.40.Jc
  • 05.70.Ln
  • 05.60.Cd
  • 47.53.+n
      • Phys.Rept. 195 12
      • Phys.Rev. 12 2455
      • Phys.Rev.Lett. 76 3196
      • Phys.Rev. 55 4413
      • Phys.Rev.Lett. 77 4470
      • SIAM Rev. 10 422
      • Phys.Rev. 35 3081
      • J.Math.Phys. 30 134
      • Physica A 211 13
      • Fractals 3 211
      • Phys.Rev. 55 99
      • Phys.Rev. 57 6409
      • Chaos Solitons Fractals 4 25
      • Chaos Solitons Fractals 7 159
      • Phys.Rev.Lett. 73 2517
      • Phys.Rev. 50 1657
      • Phys.Rev. 58 1690
      • Phys.Rev. 59 2736
      • Phys.Rev. 54 2197
      • Phys.Rev. 57 6634
      • Phys.Rev.Lett. 80 214
      • Phys.Rev. 58 1621
      • Phys.Rev. 58 1296
      • Phys.Rev.Lett. 81 1134