Citations per year

2000200620122018202402468
Abstract: (arXiv)
We present a detailed examination of the variational principle for metric general relativity as applied to a ``quasilocal'' spacetime region \M (that is, a region that is both spatially and temporally bounded). Our analysis relies on the Hamiltonian formulation of general relativity, and thereby assumes a foliation of \M into spacelike hypersurfaces Σ\Sigma. We allow for near complete generality in the choice of foliation. Using a field--theoretic generalization of Hamilton--Jacobi theory, we define the quasilocal stress-energy-momentum of the gravitational field by varying the action with respect to the metric on the boundary \partial\M. The gravitational stress-energy-momentum is defined for a two--surface BB spanned by a spacelike hypersurface in spacetime. We examine the behavior of the gravitational stress-energy-momentum under boosts of the spanning hypersurface. The boost relations are derived from the geometrical and invariance properties of the gravitational action and Hamiltonian. Finally, we present several new examples of quasilocal energy--momentum, including a novel discussion of quasilocal energy--momentum in the large-sphere limit towards spatial infinity.