Evidence for supermassive black holes in active galactic nuclei from emission-line reverberation
Jul, 200010 pages
Published in:
- Astrophys.J.Lett. 540 (2000) L13-L16
e-Print:
- astro-ph/0007147 [astro-ph]
DOI:
View in:
Citations per year
Abstract: (arXiv)
Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies, and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. In the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected velocity proportional to inverse square root of the distance correlation between distance and line width, and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert 1 galaxy NGC 4051 and find that that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission-line region clouds.References(19)
Figures(0)