Quantitative Universality for a Class of Nonlinear Transformations
Jun, 197746 pages
Published in:
- J.Statist.Phys. 19 (1978) 25
DOI:
Report number:
- LA-UR-77-1063
Citations per year
Abstract: (Springer)
A large class of recursion relationsxn + 1 = λf(xn) exhibiting infinite bifurcation is shown to possess a rich quantitative structure essentially independent of the recursion function. The functions considered all have a unique differentiable maximum. With sufficiently small),z > 1, the universal details depend only uponz. In particular, the local structure of high-order stability sets is shown to approach universality, rescaling in successive bifurcations, asymptotically by the ratioα (α = 2.5029078750957... forz = 2). This structure is determined by a universal functiong*(x), where the 2nth iterate off,f(n), converges locally toα−ng*(αnx) for largen. For the class off's considered, there exists aλn such that a 2n-point stable limit cycle including exists;λ∞ −λn R~δ−n (δ = 4.669201609103... forz = 2). The numbersα andδ have been computationally determined for a range ofz through their definitions, for a variety off's for eachz. We present a recursive mechanism that explains these results by determiningg* as the fixed-point (function) of a transformation on the class off's. At present our treatment is heuristic. In a sequel, an exact theory is formulated and specific problems of rigor isolated.References(0)
Figures(0)
0 References