Divergence-free adaptive mesh refinement for magnetohydrodynamics
Dec, 2001Citations per year
Abstract: (arXiv)
In this paper we present a full-fledged scheme for the second order accurate, divergence-free evolution of vector fields on an adaptive mesh refinement (AMR) hierarchy. We focus here on adaptive mesh MHD. The scheme is based on making a significant advance in the divergence-free reconstruction of vector fields. In that sense, it complements the earlier work of Balsara and Spicer (1999) where we discussed the divergence-free time-update of vector fields which satisfy Stoke's law type evolution equations. Our advance in divergence-free reconstruction of vector fields is such that it reduces to the total variation diminishing (TVD) property for one-dimensional evolution and yet goes beyond it in multiple dimensions. Divergence-free restriction is also discussed. An electric field correction strategy is presented for use on AMR meshes. The electric field correction strategy helps preserve the divergence-free evolution of the magnetic field even when the time steps are sub-cycled on refined meshes. The above-mentioned innovations have been implemented in Balsara's RIEMANN framework for parallel, self-adaptive computational astrophysics which supports both non-relativistic and relativistic MHD. Several rigorous, three dimensional AMR-MHD test problems with strong discontinuities have been run with the RIEMANN framework showing that the strategy works very well.References(46)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]