Abstract: (arXiv)
Narrow-band searches for Lyman alpha emission are an efficient way of identifying star-forming galaxies at high redshifts. We present Keck telescope spectra confirming redshifts z = 5.7 for three objects discovered in the Large Area Lyman Alpha (LALA) survey at Kitt Peak National Observatory. All three spectra show strong, narrow emission lines with the asymmetric profile that is characteristically produced in high redshift Lyman alpha emitters by preferential HI absorption in the blue wing of the line. These objects are undetected in deep Bw, V, R, and 6600A narrow-band images from the NOAO Deep Wide-Field Survey and from LALA, as expected from Lyman break and Lyman alpha forest absorption at redshift z = 5.7. All three objects show large equivalent widths (>= 150A in the rest-frame), suggesting at least one of the following: a top-heavy initial mass function, very low stellar metallicity, or the presence of an active nucleus. We consider the case for an active nucleus to be weak in all three objects due to the limited width of the Lyman alpha emission line (< 500 km/s) and the absence of any other indicator of quasar activity. The three confirmed high redshift objects were among four spectroscopically observed targets drawn from the sample of 18 candidates presented by Rhoads and Malhotra (2001). Thus, these spectra support the Lyman alpha emitter population statistics from our earlier photometric study, which imply little evolution in number density from z=5.7 to z=4.5 and provide strong evidence that the reionization redshift is greater than 5.7.