Torus structure on graphs and twisted partition functions for minimal and affine models

Jan, 2003
51 pages
Published in:
  • J.Geom.Phys. 48 (2003) 580-634
e-Print:
Report number:
  • CPT-2003-P-4253

Citations per year

200320082013201820232301
Abstract:
Using the Ocneanu quantum geometry of ADE diagrams (and of other diagrams belonging to higher Coxeter-Dynkin systems), we discuss the classification of twisted partition functions for affine and minimal models in conformal field theory and study several examples associated with the WZW, Virasoro and W_{3} cases.
Note:
  • 50 pages, 8 figures,added references, corrected typos Subj-class: High Energy Physics - Theory: Quantum Algebra Journal-ref: Journal of Geometry and Physics, Volume 48, Issue 4, December 2003, Pages 580-634 DOI: 10.1016/S0393-0440(03)00056-1
  • field theory: affine
  • algebra: Kac-Moody
  • partition function
  • operator: algebra
  • algebra: fusion
  • algebra: representation
  • transformation: modular
  • field theory: conformal
  • model: minimal
  • graph theory