Hartree-Fock-Bogolyubov theory versus local density approximation for superfluid trapped fermionic atoms
May, 2003Citations per year
Abstract: (arXiv)
We investigate a gas of superfluid fermionic atoms trapped in two hyperfine states by a spherical harmonic potential. We propose a new regularization method to remove the ultraviolet divergence in the Hartree-Fock-Bogoliubov equations caused by the use of a zero-range atom-atom interaction. Compared with a method used in the literature, our method is simpler and has improved convergence properties. Then we compare Hartree-Fock-Bogoliubov calculations with the semiclassical local-density approximation. We observe that for systems containing a small number of atoms shell effects, which cannot be reproduced by the semiclassical calculation, are very important. For systems with a large number of atoms at zero temperature the two calculations are in quite good agreement, which, however, is deteriorated at non-zero temperature, especially near the critical temperature. In this case the different behavior can be explained within the Ginzburg-Landau theory.- 21.60.Jz
- 05.30.Fk
- 03.75.Ss
References(15)
Figures(0)