Thermal conduction and reduced cooling flows in galaxy clusters

Aug, 2003
20 pages
Published in:
  • Mon.Not.Roy.Astron.Soc. 347 (2004) 1130
e-Print:

Citations per year

2003200820132018202305101520
Abstract: (arXiv)
Conduction may play an important role in reducing cooling flows in galaxy clusters. We analyse a sample of sixteen objects using Chandra data and find that a balance between conduction and cooling can exist in the hotter clusters (T > 5 keV), provided the plasma conductivity is close to the unhindered Spitzer value. In the absence of any additional heat sources, a reduced mass inflow must develop in the cooler objects in the sample. We fit cooling flow models to deprojected data and compare the spectral mass deposition rates found to the values required to account for the excess luminosity, assuming Spitzer-rate heat transfer over the observed temperature gradients. The mass inflow rates found are lower than is necessary to maintain energy balance in at least five clusters. However, emission from cooling gas may be partially absorbed. We also compute the flux supplied by turbulent heat transport (Cho et al. 2003) and find conductivity profiles which follow a strikingly similar temperature dependence to the conductivity values required to prevent cooling. Finally, we show that the cluster radio luminosities vary by over five orders of magnitude in objects with X-ray luminosities differing by no more than a factor of a few. This suggests that there is unlikely to be a straightforward correlation between the mechanical power provided by the radio lobes and the rate of energy loss in cooling flow clusters.