The Collapse of rotating massive stars in 3 - dimensions

Sep, 2003
34 pages
Published in:
  • Astrophys.J. 601 (2004) 391-404
e-Print:
Report number:
  • LAUR-03-4092

Citations per year

2003200820132018202305101520
Abstract: (arXiv)
In this paper, we present the results of 3-dimensional collapse simulations of rotating stars for a range of stellar progenitors. We find that for the fastest spinning stars, rotation does indeed modify the convection above the proto-neutron star, but it is not fast enough to cause core fragmentation. Similarly, although strong magnetic fields can be produced once the proto-neutron star cools and contracts, the proto-neutron star is not spinning fast enough to generate strong magnetic fields quickly after collapse and, for our simulations, magnetic fields will not dominate the supernova explosion mechanism. Even so, the resulting pulsars for our fastest rotating models may emit enough energy to dominate the total explosion energy of the supernova. However, more recent stellar models predict rotation rates that are much too slow to affect the explosion, but these models are not sophisticated enough to determine whether the most recent, or past, stellar rotation rates are most likely. Thus, we must rely upon observational constraints to determine the true rotation rates of stellar cores just before collapse. We conclude with a discussion of the possible constraints on stellar rotation which we can derive from core-collapse supernovae.
Loading ...