Drilled by the jet? XMM-Newton discovers a Compton - thick AGN in the GPS galaxy Mkn 668

Feb, 2004
11 pages
Published in:
  • Astron.Astrophys. 421 (2004) 461
e-Print:

Citations per year

2004200920142019202401234
Abstract: (arXiv)
We report the XMM-Newton discovery of the first Compton-thick obscured AGN in a Broad Line Radio Galaxy, the Gigahertz Peaked-Spectrum source Mkn668 (OQ+208). The remarkably flat 2-10 keV X-ray spectrum (observed photon index, \Gamma ~ 0.7), alongside with a prominent iron K-alpha fluorescent emission line, is a clear signature of a Compton-reflection dominated spectrum. Mkn688 represents a remarkable example of discrepancy between X-ray spectral properties and optical classification, as its optical spectrum is characterized by broad and asymmetric Balmer lines. The obscuring matter is constrained to be located within the radio hotspots, in turn separated by about 10 pc. If the jets are piercing their way through a Compton-thick medium pervading the nuclear environment, one could be largely underestimating the radio activity dynamical age determined from the observed hotspot recession velocity. The soft X-ray spectrum is dominated by a much steeper component, which may be due to nuclear continuum electron scattering, or inverse Compton of the - remarkably large - far infrared emission. Soft X-rays are suppressed by a further Compton-thin (N_H ~ 10^21/cm/cm) absorbing system, that we identify with matter responsible for free-free absorption of the radio lobes.