Spin polarized states in nuclear matter with skyrme effective interaction
Mar, 2004Citations per year
Abstract:
The possibility of appearance of spin polarized states in symmetric and strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SkM, SGII (symmetric case) and SLy4, SLy5 (strongly asymmetric case) effective forces. By comparing free energy densities, it is shown that in symmetric nuclear matter ferromagnetic spin state (parallel orientation of neutron and proton spins) is more preferable than antiferromagnetic one (antiparallel orientation of spins). Strongly asymmetric nuclear matter undergoes at some critical density a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density.Note:
- Published in Progress in Ferromagnetism Research •
- The article for Nova Science Publishers (NY) volume Progress in Ferromagnetism Research, 18 pages, 6 figures
References(43)
Figures(0)