Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. 1. Numerical method and results for a 15 solar mass star

Jul, 2005
63 pages
Published in:
  • Astron.Astrophys. 447 (2006) 1049-1092
e-Print:

Citations per year

20042009201420192024051015202530
Abstract: (arXiv)
Supernova models with a full spectral treatment of the neutrino transport are presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a ``ray-by-ray plus'' approximation for treating two- (or three-) dimensional problems. The method is described in detail and critically assessed with respect to its capabilities, limitations, and inaccuracies in the context of supernova simulations. In this first paper of a series, 1D and 2D core-collapse calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in the treatment of the equation of state -- numerical and physical -- are tested, Newtonian results are compared with simulations using a general relativistic potential, bremsstrahlung and interactions of neutrinos of different flavors are investigated, and the standard approximation in neutrino-nucleon interactions with zero energy transfer is replaced by rates that include corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon correlations. Models with the full implementation of the ``ray-by-ray plus'' spectral transport were found not to explode, neither in spherical symmetry nor in 2D with a 90 degree lateral wedge. The success of previous 2D simulations with grey, flux-limited neutrino diffusion can therefore not be confirmed. Omitting the radial velocity terms in the neutrino momentum equation leads to ``artificial'' explosions by increasing the neutrino energy density in the convective gain layer by about 20--30% and thus the integral neutrino energy deposition in this region by about a factor of two. (abbreviated)
  • RADIATIVE TRANSFER