Dark energy: the observational challenge

Oct, 2005
13 pages
Published in:
  • New Astron.Rev. 49 (2005) 337-345
e-Print:

Citations per year

200620112016202120240123456
Abstract: (arXiv)
Nearly all proposed tests for the nature of dark energy measure some combination of four fundamental observables: the Hubble parameter H(z), the distance-redshift relation d(z), the age-redshift relation t(z), or the linear growth factor D_1(z). I discuss the sensitivity of these observables to the value and redshift history of the equation of state parameter w, emphasizing where these different observables are and are not complementary. Demonstrating time-variability of w is difficult in most cases because dark energy is dynamically insignificant at high redshift. Time-variability in which dark energy tracks the matter density at high redshift and changes to a cosmological constant at low redshift is {\it relatively} easy to detect. However, even a sharp transition of this sort at z_c=1 produces only percent-level differences in d(z) or D_1(z) over the redshift range 0.4 < z < 1.8$, relative to the closest constant-w model. Estimates of D_1(z) or H(z) at higher redshift, potentially achievable with the Ly-alpha forest, galaxy redshift surveys, and the CMB power spectrum, can add substantial leverage on such models, given precise distance constraints at z < 2. The most promising routes to obtaining sub-percent precision on dark energy observables are space-based studies of Type Ia supernovae, which measure d(z) directly, and of weak gravitational lensing, which is sensitive to d(z), D_1(z), and H(z).
Loading ...