Counting chiral primaries in N = 1, d=4 superconformal field theories
Oct, 2005Citations per year
Abstract:
I derive a procedure to count chiral primary states in N=1 superconformal field theories in four dimensions. The chiral primaries are counted by putting the N=1 field theory on S^3 X R. I also define an index that counts semi-short multiplets of the superconformal theory. I construct N=1 supersymmetric Lagrangians on S^3 X R for theories which are believed to flow to a conformal fixed point in the IR. For ungauged theories I reduce the field theory to a supersymmetric quantum mechanics, whereas for gauge theories I use chiral ring arguments. I count chiral primaries for SU(2) SYM with three flavors and its Seiberg dual. Those two results agree provided a new chiral ring relation holds.- 11.25.Tq
- 11.15.Kc
- 11.25.Hf
- Chiral primaries
- index
- Index
- field theory: conformal
- supersymmetry
- quantum mechanics
- gauge field theory: SU(2)
References(0)
Figures(0)
Loading ...