literature

Strange quark mass from e+ e- revisited and present status of light quark masses

Oct, 2005
14 pages
Published in:
  • Phys.Rev.D 74 (2006) 034013
e-Print:

Citations per year

20052010201520202024024681012
Abstract: (arXiv)
We reconsider the determinations of the strange quark mass m_s from e+e- into hadrons data using a new combination of FESR and revisiting the existing tau-like sum rules by including non-resonant contributions to the spectral functions. To order alpha_s^3 and including the tachyonic gluon mass lambda^2 contribution, which phenomenologically parametrizes the UV renormalon effect into the PT series, we obtain the invariant mass m_s=(119 +- 17)MeV leading to: m_s(2 GeV)=(104+- 15)MeV. Combining this value with the recent and independent phenomenological determinations from some other channels, to order alpha_s^3 and including lambda^2, we deduce the weighted average: m_s (2 GeV)=(96.1 +- 4.8)MeV . The positivity of the spectral functions in the (pseudo)scalar [resp. vector] channels leads to the lower [resp. upper] bounds of m_s(2 GeV): (71 +- 4) MeV < m_s(2 GeV) < (151 +- 14) MeV, to order alpha_s^3. Using the ChPT mass ratio r_3 = 2m_s/(m_u+m_d)=24.2 +- 1.5, and the average value of m_s, we deduce: (m_u+m_d)(2 GeV)=(7.9 +- 0.6) MeV, consistent with the pion sum rule result, which, combined with the ChPT value for m_u/m_d, gives: m_d(2 GeV)=(5.1 +- 0.4)MeV and m_u(2 GeV)=(2.8 +- 0.2)MeV. Finally, using (m_u+m_d) from the pion sum rule and the average value of m_s (without the pion sum rule), the method gives: r_3= 23.5 +- 5.8 in perfect agreement with the ChPT ratio, indicating the self-consistency of the sum rule results. Using the value: m_b(m_b)=(4.23 +- 0.06) GeV, we also obtain the model-building useful scale-independent mass ratio: m_b/m_s=50 +- 3.
Note:
  • Updated and improved average values. Version to appear in Phys. Rev. D
  • 11.30.Rd
  • 13.66.Bc
  • 14.65.Bt
  • 12.38.Lg
  • electron positron: annihilation
  • hadron: electroproduction
  • mass: strangeness
  • sum rule: finite energy
  • spectral representation: parametrization
  • cross section: hadronic