Gravitational radiation from newborn magnetars
Nov, 2005
Published in:
- Astrophys.J.Lett. 634 (2005) L165-L168
e-Print:
- astro-ph/0511068 [astro-ph]
DOI:
View in:
Citations per year
Abstract: (arXiv)
There is growing evidence that two classes of high-energy sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars contain slowly spinning ``magnetars'', i.e. neutron stars whose emission is powered by the release of energy from their extremely strong magnetic fields (>10^15 G. We show here that the enormous energy liberated in the 2004 December 27 giant flare from SGR1806-20 (~5 10^46 erg), together with the likely recurrence time of such events, requires an internal field strength of > 10^16 G. Toroidal magnetic fields of this strength are within an order of magnitude of the maximum fields that can be generated in the core of differentially-rotating neutron stars immediately after their formation, if their initial spin period is of a few milliseconds. A substantial deformation of the neutron star is induced by these magnetic fields and, provided the deformation axis is offset from the spin axis, a newborn fast-spinning magnetar would radiate for a few weeks a strong gravitational wave signal the frequency of which (0.5-2 kHz range) decreases in time. The signal from a newborn magnetar with internal field > 10^16.5 G could be detected with Advanced LIGO-class detectors up to the distance of the Virgo cluster (characteristic amplitude h_c about 10^-21). Magnetars are expected to form in Virgo at a rate approx. 1/yr. If a fraction of these have sufficiently high internal magnetic field, then newborn magnetars constitute a promising new class of gravitational wave emitters.- gravitational waves
- stars: individual (SGR 1806-20)
- stars: magnetic fields
- stars: neutron
- gravitational radiation: particle source
- star: magnetic
- neutron star
- galaxy: cluster
- magnetic field
- gravitational radiation detector
References(0)
Figures(0)
Loading ...