A Supersymmetric matrix model. III. Hidden SUSY in statistical systems
Sep, 200618 pages
Published in:
- JHEP 11 (2006) 030
e-Print:
- hep-th/0609210 [hep-th]
Report number:
- CERN-PH-TH-2006-185,
- TPJU-10-2006
Citations per year
Abstract: (arXiv)
The Hamiltonian of a recently proposed supersymmetric matrix model has been shown to become block-diagonal in the large-N, infinite 't Hooft coupling limit. We show that (most of) these blocks can be mapped into seemingly non-supersymmetric -dimensional statistical systems, thus implying non-trivial (and apparently yet-unknown) relations within their spectra. Furthermore, the ground states of XXZ-chains with an odd number of sites and asymmetry parameter , objects of the much-discussed Razumov--Stroganov conjectures, turn out to be just the strong-coupling supersymmetric vacua of our matrix model.- supersymmetry: hidden symmetry
- matrix model
- statistical mechanics
- Hamiltonian formalism
- expansion 1/N
- ground state
- model: spin
- Bethe ansatz: solution
- numerical calculations
References(31)
Figures(0)