The Asymptotic Form of Cosmic Structure: Small Scale Power and Accretion History

Nov, 2006
17 pages
Published in:
  • Astrophys.J. 665 (2007) 1-13
e-Print:

Citations per year

200720122017202220252104
Abstract: (arXiv)
We explore the effects of small scale structure on the formation and equilibrium of dark matter halos in a universe dominated by vacuum energy. We present the results of a suite of four N-body simulations, two with a LCDM initial power spectrum and two with WDM-like spectra that suppress the early formation of small structures. All simulations are run into to far future when the universe is 64Gyr/h old, long enough for halos to essentially reach dynamical equilibrium. We quantify the importance of hierarchical merging on the halo mass accretion history, the substructure population, and the equilibrium density profile. We modify the mass accretion history function of Wechsler et al. (2002) by introducing a parameter, \gamma, that controls the rate of mass accretion, dln(M) / dln(a) ~ a^(-\gamma), and find that this form characterizes both hierarchical and monolithic formation. Subhalo decay rates are exponential in time with a much shorter time scale for WDM halos. At the end of the simulations, we find truncated Hernquist density profiles for halos in both the CDM and WDM cosmologies. There is a systematic shift to lower concentration for WDM halos, but both cosmologies lie on the same locus relating concentration and formation epoch. Because the form of the density profile remains unchanged, our results indicate that the equilibrium halo density profile is set independently of the halo formation process.
  • COSMOLOGY THEORY
  • LSS
  • DARK MATTER