Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks

Nov, 2007
31 pages
Published in:
  • Astron.Astrophys. 480 (2008) 859
e-Print:

Citations per year

2008201120142017202005101520
Abstract: (arXiv)
The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the canonical value for the interstellar medium, km-sized bodies can form in the inner disk <2 AU within 10 thousand years. However, we find that solid particles get destroyed through collisional fragmentation. Only with the unrealistically high-threshold velocities needed for fragmentation to occur (>30 m/s), particles are able to grow to larger sizes in low turbulent disks. We also find that less than 5% of the small dust grains remain in the disk after 1 Myrs due to radial drift, no matter whether fragmentation is included in the simulations or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up the coagulation scheme by a factor of 10 thousand.
Note:
  • Submitted to Astron.Astrophys.
  • ACCRETION DISKS
  • CIRCUMSTELLAR MATTER
  • STARS FORMATION
  • STARS PRE-MAIN SEQUENCE
  • INFRARED STARS